62 research outputs found

    Genetic polymorphisms associated with the inflammatory response in bacterial meningitis

    Get PDF
    BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches

    Identification of the CRE-1 Cellulolytic Regulon in Neurospora crassa

    Get PDF
    Background: In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and b-galactosidase. Methodology/Principal Findings: Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Dcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Dcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 59-SYGGRG-39 motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Dcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion

    A Molecular Signature of Proteinuria in Glomerulonephritis

    Get PDF
    Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Get PDF
    BACKGROUND: Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVE: We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS: We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 ± 19.2 years) recruited from 29 international centers. RESULTS: At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% ± 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of ≤35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS: MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Kidney Protection in Diabetes Mellitus

    No full text
    corecore