47 research outputs found

    The 12-item World Health Organization Disability Assessment Schedule II (WHO-DAS II): a nonparametric item response analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have analyzed the psychometric properties of the World Health Organization Disability Assessment Schedule II (WHO-DAS II) using classical omnibus measures of scale quality. These analyses are sample dependent and do not model item responses as a function of the underlying trait level. The main objective of this study was to examine the effectiveness of the WHO-DAS II items and their options in discriminating between changes in the underlying disability level by means of item response analyses. We also explored differential item functioning (DIF) in men and women.</p> <p>Methods</p> <p>The participants were 3615 adult general practice patients from 17 regions of Spain, with a first diagnosed major depressive episode. The 12-item WHO-DAS II was administered by the general practitioners during the consultation. We used a non-parametric item response method (Kernel-Smoothing) implemented with the TestGraf software to examine the effectiveness of each item (item characteristic curves) and their options (option characteristic curves) in discriminating between changes in the underliying disability level. We examined composite DIF to know whether women had a higher probability than men of endorsing each item.</p> <p>Results</p> <p>Item response analyses indicated that the twelve items forming the WHO-DAS II perform very well. All items were determined to provide good discrimination across varying standardized levels of the trait. The items also had option characteristic curves that showed good discrimination, given that each increasing option became more likely than the previous as a function of increasing trait level. No gender-related DIF was found on any of the items.</p> <p>Conclusions</p> <p>All WHO-DAS II items were very good at assessing overall disability. Our results supported the appropriateness of the weights assigned to response option categories and showed an absence of gender differences in item functioning.</p

    Stimulus set size modulates the sex–emotion interaction in face categorization

    Get PDF
    Previous research has shown that invariant facial features—for example, sex—and variant facial features—for example, emotional expressions—interact during face categorization. The nature of this interaction is a matter of dispute, however, and has been reported as either asymmetrical, such that sex cues influence emotion perception but emotional expressions do not affect the perception of sex, or symmetrical, such that sex and emotion cues each reciprocally influence the categorization of the other. In the present research, we identified stimulus set size as the critical factor leading to this disparity. Using faces drawn from different databases, in two separate experiments we replicated the finding of a symmetrical interaction between face sex and emotional expression when larger sets of posers were used. Using a subset of four posers, in the same setups, however, did not provide evidence for a symmetrical interaction, which is also consistent with prior research. This pattern of results suggests that different strategies may be used to categorize aspects of faces that are encountered repeatedly

    Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

    Get PDF
    Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy

    Tensor representation of non-linear models using cross approximations

    No full text
    Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. However, tensor methods cannot always be implemented efficiently, specially when dealing with non-linear models. In this paper, we discuss the importance of achieving a tensor representation of the model itself for the efficiency of tensor-based algorithms. We investigate the adequacy of interpolation rather than projection-based approaches as a means to enforce such tensor representation, and propose the use of cross approximations for models in moderate dimension. Finally, linearization of tensor problems is analyzed and several strategies for the tensor subspace construction are proposed. This is a post-peer-review, pre-copyedit version of an article published in Journal of scientific computin

    PGD-based “Computational Vademecum” for efficient design, optimization and control

    No full text
    D espite the impressive progresses attained by simulation capabilities and techniques, some challenging problems remain today intractable. These prob- lems, that are common to many branches of science and engineering, are of differ- ent nature. Among them, we can cite those related to high-dimensional models, on which mesh-based approaches fail due to the exponential increase of degrees of freedom. Other challenging scenarios concern problems requiring many direct solutions (optimization, inverse identifica- tion, uncertainty quantification ! ) or those needing very fast solutions (real time simulation, simulation based control ! )
    corecore