10,943 research outputs found
Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system
On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor
Case study: The Community Development Trust taps Wall Street investors
Community development ; Housing - Finance ; Real estate investment trusts
Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters
The outcomes of a pilot-scale study of the rejection of trihalomethanes (THMs) precursors by commercial ultrafiltration/nanofiltration (UF/NF) spiral-wound membrane elements are presented based on a single surface water source in Scotland. The study revealed the expected trend of increased flux and permeability with increasing pore size for the UF membranes; the NF membranes provided similar fluxes despite the lower nominal pore size. The dissolved organic carbon (DOC) passage decreased with decreasing molecular weight cut-off, with a less than one-third the passage recorded for the NF membranes than for the UF ones.
The yield (weight % total THMs per DOC) varied between 2.5% and 8% across all membranes tested, in reasonable agreement with the literature, with the aromatic polyamide membrane providing both the lowest yield and lowest DOC passage. The proportion of the hydrophobic (HPO) fraction removed was found to increase with decreasing membrane selectivity (increasing pore size), and THM generation correlated closely (R2 = 0.98) with the permeate HPO fractional concentration
More on coupling coefficients for the most degenerate representations of SO(n)
We present explicit closed-form expressions for the general group-theoretical
factor appearing in the alpha-topology of a high-temperature expansion of
SO(n)-symmetric lattice models. This object, which is closely related to
6j-symbols for the most degenerate representation of SO(n), is discussed in
detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and
Discussion, References adde
Detecting periodicity in experimental data using linear modeling techniques
Fourier spectral estimates and, to a lesser extent, the autocorrelation
function are the primary tools to detect periodicities in experimental data in
the physical and biological sciences. We propose a new method which is more
reliable than traditional techniques, and is able to make clear identification
of periodic behavior when traditional techniques do not. This technique is
based on an information theoretic reduction of linear (autoregressive) models
so that only the essential features of an autoregressive model are retained.
These models we call reduced autoregressive models (RARM). The essential
features of reduced autoregressive models include any periodicity present in
the data. We provide theoretical and numerical evidence from both experimental
and artificial data, to demonstrate that this technique will reliably detect
periodicities if and only if they are present in the data. There are strong
information theoretic arguments to support the statement that RARM detects
periodicities if they are present. Surrogate data techniques are used to ensure
the converse. Furthermore, our calculations demonstrate that RARM is more
robust, more accurate, and more sensitive, than traditional spectral
techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified
styl
Scattering and absorption of ultracold atoms by nanotubes
We investigate theoretically how cold atoms, including Bose-Einstein
condensates, are scattered from, or absorbed by nanotubes with a view to
analysing recent experiments. In particular we consider the role of potential
strength, quantum reflection, atomic interactions and tube vibrations on atom
loss rates. Lifshitz theory calculations deliver a significantly stronger
scattering potential than that found in experiment and we discuss possible
reasons for this. We find that the scattering potential for dielectric tubes
can be calculated to a good approximation using a modified pairwise summation
approach, which is efficient and easily extendable to arbitrary geometries.
Quantum reflection of atoms from a nanotube may become a significant factor at
low temperatures, especially for non-metallic tubes. Interatomic interactions
are shown to increase the rate at which atoms are lost to the nanotube and lead
to non-trivial dynamics. Thermal nanotube vibrations do not significantly
increase loss rates or reduce condensate fractions, but lower frequency
oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure
Engaging postgraduate students and supporting higher education to enhance the 21st century student experience:Final Report
Multipole decomposition of LDA+ energy and its application to actinides compounds
A general reformulation of the exchange energy of -shell is applied in
the analysis of the magnetic structure of various actinides compounds in the
framework of LDA+U method. The calculations are performed in an efficient
scheme with essentially only one free parameter, the screening length. The
results are analysed in terms of different polarisation channels, due to
different multipoles. Generally it is found that the spin-orbital polarisation
is dominating. This can be viewed as a strong enhancement of the spin-orbit
coupling in these systems. This leads to a drastic decrease in spin
polarisation, in accordance with experiments. The calculations are able to
correctly differentiate magnetic and non-magnetic Pu system. Finally, in all
magnetic systems a new multipolar order is observed, whose polarisation energy
is often larger in magnitude than that of spin polarisation.Comment: Fixed some references and picture
- …
