18 research outputs found

    Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS

    Get PDF
    Corning archeological reference glasses A, B, C, and D have been made to simulate different historic technologies of glass production and are used as standards in historic glass investigations. In this work, nanoseconds (193, 266 nm) and femtosecond (800 nm) laser ablation were used to study the elemental composition of Corning glasses using laser ablation inductively coupled plasma mass spectrometry. The determined concentrations of 26 oxides (Li2O, B2O3, Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, NiO, CuO, ZnO, Rb2O, SrO, ZrO2, SnO2, Sb2O5, BaO, PbO, Bi2O3) are compared with values reported in the literature. Results show variable discrepancies between the data, with the largest differences found for Cr2O3 in Corning A; Li2O, B2O3, and Cr2O3 in Corning B; and MnO, Sb2O5, Cr2O3, and Bi2O3 in Corning C. The best agreement between the measured and literature values was found for Corning D. However, even for this reference, glass re-evaluation of the data was necessary and new values for PbO, BaO, and Bi2O3 are proposed

    Zanzibar and Indian Ocean trade in the first millennium CE: the glass bead evidence

    Get PDF
    Recent archaeological excavations at the seventh-to tenth-century CE sites of Unguja Ukuu and Fukuchani on Zanzibar Island have produced large numbers of glass beads that shed new light on the island's early interactions with the wider Indian Ocean world. A selected sample of the beads recovered was analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the origins of the glass used to make the beads and potential trade relationships are considered. The data show that two major glass types can be identified: mineral-soda glass, m-Na-Al, produced in Sri Lanka (and possibly South India) and plant ash soda glass. The latter comprises three subtypes: two with low alumina concentrations and different quantities of lime (here designated v-Na-Ca subtypes A and B) and one with high alumina (designated v-Na-Al). The v-Na-Ca subtype A beads are chemically similar to Sasanian type 1 glass as well as Zhizo beads found in southern Africa, while v-Na-Ca subtype B compares reasonably well with glasses from Syria and the Levant. While the mineral-soda beads were made in South Asia, it appears likely that at least some of the plant ash beads were made in South or Southeast Asia from imported raw and/or scrap Middle Eastern glass. In contrast, during this period, all beads imported into southern Africa were made of Middle Eastern glass from east of the Euphrates (v-Na-Ca subtype A) and appear to have arrived on ships from Oman and the Persian Gulf. These data suggest that the two sections of the African coast were engaged in different Indian Ocean trade circuits
    corecore