12 research outputs found

    Opposite Influence of Perceptual Memory on Initial and Prolonged Perception of Sensory Ambiguity

    Get PDF
    Observers continually make unconscious inferences about the state of the world based on ambiguous sensory information. This process of perceptual decision-making may be optimized by learning from experience. We investigated the influence of previous perceptual experience on the interpretation of ambiguous visual information. Observers were pre-exposed to a perceptually stabilized sequence of an ambiguous structure-from-motion stimulus by means of intermittent presentation. At the subsequent re-appearance of the same ambiguous stimulus perception was initially biased toward the previously stabilized perceptual interpretation. However, prolonged viewing revealed a bias toward the alternative perceptual interpretation. The prevalence of the alternative percept during ongoing viewing was largely due to increased durations of this percept, as there was no reliable decrease in the durations of the pre-exposed percept. Moreover, the duration of the alternative percept was modulated by the specific characteristics of the pre-exposure, whereas the durations of the pre-exposed percept were not. The increase in duration of the alternative percept was larger when the pre-exposure had lasted longer and was larger after ambiguous pre-exposure than after unambiguous pre-exposure. Using a binocular rivalry stimulus we found analogous perceptual biases, while pre-exposure did not affect eye-bias. We conclude that previously perceived interpretations dominate at the onset of ambiguous sensory information, whereas alternative interpretations dominate prolonged viewing. Thus, at first instance ambiguous information seems to be judged using familiar percepts, while re-evaluation later on allows for alternative interpretations

    Auditory temporal modulation of the visual Ternus effect: the influence of time interval

    No full text
    Research on multisensory interactions has shown that the perceived timing of a visual event can be captured by a temporally proximal sound. This effect has been termed 'temporal ventriloquism effect.' Using the Ternus display, we systematically investigated how auditory configurations modulate the visual apparent-motion percepts. The Ternus display involves a multielement stimulus that can induce either of two different percepts of apparent motion: 'element motion' or 'group motion'. We found that two sounds presented in temporal proximity to, or synchronously with, the two visual frames, respectively, can shift the transitional threshold for visual apparent motion (Experiments 1 and 3). However, such effects were not evident with single-sound configurations (Experiment 2). A further experiment (Experiment 4) provided evidence that time interval information is an important factor for crossmodal interaction of audiovisual Ternus effect. The auditory interval was perceived as longer than the same physical visual interval in the sub-second range. Furthermore, the perceived audiovisual interval could be predicted by optimal integration of the visual and auditory intervals
    corecore