1,420 research outputs found
Multi-step self-guided pathways for shape-changing metamaterials
Multi-step pathways, constituted of a sequence of reconfigurations, are
central to a wide variety of natural and man-made systems. Such pathways
autonomously execute in self-guided processes such as protein folding and
self-assembly, but require external control in macroscopic mechanical systems,
provided by, e.g., actuators in robotics or manual folding in origami. Here we
introduce shape-changing mechanical metamaterials, that exhibit self-guided
multi-step pathways in response to global uniform compression. Their design
combines strongly nonlinear mechanical elements with a multimodal architecture
that allows for a sequence of topological reconfigurations, i.e., modifications
of the topology caused by the formation of internal self-contacts. We realized
such metamaterials by digital manufacturing, and show that the pathway and
final configuration can be controlled by rational design of the nonlinear
mechanical elements. We furthermore demonstrate that self-contacts suppress
pathway errors. Finally, we demonstrate how hierarchical architectures allow to
extend the number of distinct reconfiguration steps. Our work establishes
general principles for designing mechanical pathways, opening new avenues for
self-folding media, pluripotent materials, and pliable devices in, e.g.,
stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See
https://youtu.be/8m1QfkMFL0I for an explanatory vide
Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and "Scala Naturae"
An improved observable for the forward-backward asymmetry in B -> K* l+ l- and Bs -> phi l+ l-
We study the decay B -> K* l+ l- in the QCD factorization approach and
propose a new integrated observable whose dependence on the form factors is
almost negligible, consequently the non--perturbative error is significantly
reduced and indeed its overall theoretical error is dominated by perturbative
scale uncertainties. The new observable we propose is the ratio between the
integrated forward--backward asymmetry in the [4,6] GeV^2 and [1,4] GeV^2
dilepton invariant mass bins. This new observable is particularly interesting
because, when compared to the location of the zero of the FBA spectrum, it is
experimentally easier to measure and its theoretical uncertainties are almost
as small; moreover it displays a very strong dependence on the phase of the
Wilson coefficient C_10 that is otherwise only accessible through complicated
CP violating asymmetries. We illustrate the new physics sensitivity of this
observable within the context of few extensions of the Standard Model, namely
the SM with four generations, an MSSM with non--vanishing source of flavor
changing neutral currents in the down squark sector and a Z' model with tree
level flavor changing couplings.Comment: 19 pages, 7 figure
The Benefits of B ---> K* l+ l- Decays at Low Recoil
Using the heavy quark effective theory framework put forward by Grinstein and
Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a
softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of
the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b,
sqrt{q^2}) and include the next-to-leading order corrections from the charm
quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading
Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise
form factor relations correlate the B -> K* l+ l- transversity amplitudes,
which simplifies the description of the various decay observables and provides
opportunities for the extraction of the electroweak short distance couplings.
We propose new angular observables which have very small hadronic
uncertainties. We exploit existing data on B -> K* l+ l- distributions and show
that the low recoil region provides powerful additional information to the
large recoil one. We find disjoint best-fit solutions, which include the
Standard Model, but also beyond-the-Standard Model ones. This ambiguity can be
accessed with future precision measurements.Comment: 31 pages, 8 figures; Instability near minimal recoil from numerics
removed, Fig. 1 replaced and minor shifts in short distance uncertainties in
SM predictions; typos corrected and references added; main results and
conclusions unchange
Measurements in two bases are sufficient for certifying high-dimensional entanglement
High-dimensional encoding of quantum information provides a promising method
of transcending current limitations in quantum communication. One of the
central challenges in the pursuit of such an approach is the certification of
high-dimensional entanglement. In particular, it is desirable to do so without
resorting to inefficient full state tomography. Here, we show how carefully
constructed measurements in two bases (one of which is not orthonormal) can be
used to faithfully and efficiently certify bipartite high-dimensional states
and their entanglement for any physical platform. To showcase the practicality
of this approach under realistic conditions, we put it to the test for photons
entangled in their orbital angular momentum. In our experimental setup, we are
able to verify 9-dimensional entanglement for a pair of photons on a
11-dimensional subspace each, at present the highest amount certified without
any assumptions on the state.Comment: 11+14 pages, 2+7 figure
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations
The recently observed event excess in MiniBooNE anti-neutrino data is in
agreement with the LSND evidence for electron anti-neutrino appearance. We
propose an explanation of these data in terms of a (3+1) scheme with a sterile
neutrino including non-standard neutrino interactions (NSI) at neutrino
production and detection. The interference between oscillations and NSI
provides a source for CP violation which we use to reconcile different results
from neutrino and anti-neutrino data. Our best fit results imply NSI at the
level of a few percent relative to the standard weak interaction, in agreement
with current bounds. We compare the quality of the NSI fit to the one obtained
within the (3+1) and (3+2) pure oscillation frameworks. We also briefly comment
on using NSI (in an effective two-flavour framework) to address a possible
difference in neutrino and anti-neutrino results from the MINOS experiment.Comment: 28 pages, 9 figures, discussion improved, new appendix added,
conclusions unchange
Exploring New Physics in the C7-C7' plane
The Wilson coefficient C7 governing the radiative electromagnetic decays of B
meson has been calculated to a very high accuracy in the Standard Model, but
experimental bounds on either the magnitude or the sign of C7 are often
model-dependent. In the present paper, we attempt at constraining both the
magnitude and sign of C7 using a systematic approach. We consider already
measured observables like the branching ratios of B \rightarrow Xs mu+ mu- and
B \rightarrow Xs gamma, the isospin and CP asymmetries in B \rightarrow K*
gamma, as well as AFB and FL in B \rightarrow K*l+l-. We also discuss the
transverse observable AT2 which, once measured, may help to disentangle some of
the scenarios considered. We explore the constraints on C7, C9, C10 as well as
their chirality-flipped counterparts. Within our framework, we find that we
need to extend the constraints up to 1.6 sigma to allow for the "flipped-sign
solution" of C7. The SM solution for C7 exhibits a very mild tension if New
Physics is allowed in dipole operators only. We provide semi-numerical
expressions for all these observables as functions of the relevant Wilson
coefficients at the low scale.Comment: 54 pages, 16 figures, 15 tables. Normalization factor introduced for
the integrated AFB and FL in Sec.2.5 (Eq.2.35-2.38). Conclusions unchanged.
Not updated in JHE
The Relationship Between HR Practices and Firm Performance: Examining Causal Order
Significant research attention has been devoted to examining the relationship between HR practices and firm performance, and the research support has assumed HR as the causal variable. Using data from 45 business units (with 62 data points), this study examines how measures of HR practices correlate with past, concurrent, and future operational performance measures. The results indicate that correlations with performance measures at all three times are both high and invariant, and that controlling for past or concurrent performance virtually eliminates the correlation of HR with future performance. Implications are discussed
Forward-backward Asymmetry and Branching Ratio of B \rar K_1 \ell^+ \ell^- Transition in Supersymmetric Models
The mass eigen states and are mixture of the strange
members of two axial-vector SU(3) octet, and .
Taking into account this mixture, the forward-backward asymmetry and branching
ratio of B \rar K_1(1270,1400) \ell^+ \ell^- transitions are studied in the
framework of different supersymmetric models. It is found that the results have
considerable deviation from the standard model predictions. Any measurement of
these physical observables and their comparison with the results obtained in
this paper can give useful information about the nature of interactions beyond
the standard model.Comment: 14 pages, 4 figure
Experimental GHZ Entanglement beyond Qubits
The Greenberger-Horne-Zeilinger (GHZ) argument provides an all-or-nothing
contradiction between quantum mechanics and local-realistic theories. In its
original formulation, GHZ investigated three and four particles entangled in
two dimensions only. Very recently, higher dimensional contradictions
especially in three dimensions and three particles have been discovered but it
has remained unclear how to produce such states. In this article we
experimentally show how to generate a three-dimensional GHZ state from
two-photon orbital-angular-momentum entanglement. The first suggestion for a
setup which generates three-dimensional GHZ entanglement from these entangled
pairs came from using the computer algorithm Melvin. The procedure employs
novel concepts significantly beyond the qubit case. Our experiment opens up the
possibility of a truly high-dimensional test of the GHZ-contradiction which,
interestingly, employs non-Hermitian operators.Comment: 6+6 pages, 8 figure
- …
