147 research outputs found

    Determinants of selenium status in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed.</p> <p>Methods</p> <p>Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se) were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15), dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106) and women (n = 155).</p> <p>Conclusions</p> <p>Plasma Se concentration was 142.0 Β± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys), but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg<sup>0.75</sup>), plasma folate, vitamin B<sub>12 </sub>and hCys (negatively). One <it>GPX1 </it>genotype (679T/T) was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.</p

    Intensity modulated radiotherapy (IMRT) in patients with carcinomas of the paranasal sinuses: clinical benefit for complex shaped target volumes

    Get PDF
    INTRODUCTION: The aim of the study was to evaluate the clinical outcome of intensity modulated radiotherapy (IMRT) in 46 patients with paranasal sinus tumors with special respect to treatment-related toxicity. PATIENTS AND METHODS: We treated 46 patients with histologically proven tumors of the paranasal sinuses with IMRT. Histological classification included squamous cell carcinoma in 6, adenocarcinoma in 8, adenoidcystic carcinoma in 20 and melanoma in 8 patients, respectively. Six patients had been treated with RT during initial therapy after primary diagnosis, and IMRT was performed for the treatment of tumor progression as re-irradiation. RESULTS: Overall survival rates were 96% at 1 year, 90% at 3 years. Calculated from the initiation of IMRT as primary radiotherapy, survival rates at 1 and 3 years were 95% and 80%. In six patients IMRT was performed as re-irradiation, and survival rate calculated from re-irradiation was 63% at 1 year. Local control rates were 85% at 1, 81% at 2 and 49% at 3 years after primary RT and 50% at 1 year after re-irradiation. Distant metastases-free survival in patients treated with IMRT as primary RT was 83% after 1 and 64% after 3 years. For patients treated as primary irradiation with IMRT, the distant control rate was 83% at 1 year and 0% at 2 years. No severe radiation-induced side-effects could be observed. CONCLUSION: IMRT for tumors of the paranasal sinuses is associated with very good tumor control rates. Treatment-related acute and long-term toxicity can be minimized as compared to historical results with conventional RT

    A Cell Permeable Peptide Inhibitor of NFAT Inhibits Macrophage Cytokine Expression and Ameliorates Experimental Colitis

    Get PDF
    Nuclear factor of activated T cells (NFAT) plays a critical role in the development and function of immune and non-immune cells. Although NFAT is a central transcriptional regulator of T cell cytokines, its role in macrophage specific gene expression is less defined. Previous work from our group demonstrated that NFAT regulates Il12b gene expression in macrophages. Here, we further investigate NFAT function in murine macrophages and determined the effects of a cell permeable NFAT inhibitor peptide 11R-VIVIT on experimental colitis in mice. Treatment of bone marrow derived macrophages (BMDMs) with tacrolimus or 11R-VIVIT significantly inhibited LPS and LPS plus IFN-Ξ³ induced IL-12 p40 mRNA and protein expression. IL-12 p70 and IL-23 secretion were also decreased. NFAT nuclear translocation and binding to the IL-12 p40 promoter was reduced by NFAT inhibition. Experiments in BMDMs from IL-10 deficient (Il10βˆ’/βˆ’) mice demonstrate that inhibition of IL-12 expression by 11R-VIVIT was independent of IL-10 expression. To test its therapeutic potential, 11R-VIVIT was administered systemically to Il10βˆ’/βˆ’ mice with piroxicam-induced colitis. 11R-VIVIT treated mice demonstrated significant improvement in colitis compared to mice treated with an inactive peptide. Moreover, decreased spontaneous secretion of IL-12 p40 and TNF in supernatants from colon explant cultures was demonstrated. In summary, NFAT, widely recognized for its role in T cell biology, also regulates important innate inflammatory pathways in macrophages. Selective blocking of NFAT via a cell permeable inhibitory peptide is a promising therapeutic strategy for the treatment of inflammatory bowel diseases

    E4orf1: A Novel Ligand That Improves Glucose Disposal in Cell Culture

    Get PDF
    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance(IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 β€˜requires’ E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as β€˜sufficient’ to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras–the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large(Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif(PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    Does directly observed therapy (DOT) reduce drug resistant tuberculosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Directly observed therapy (DOT) is a widely recommended and promoted strategy to manage tuberculosis (TB), however, there is still disagreement about the role of DOT in TB control and the impact it has on reducing the acquisition and transmission of drug resistant TB. This study compares the portion of drug resistant genotype clusters, representing recent transmission, within and between communities implementing programs differing only in their directly observed therapy (DOT) practices.</p> <p>Methods</p> <p>Genotype clusters were defined as 2 or more patient members with matching IS<it>6110 </it>restriction fragment length polymorphism (RFLP) and spoligotype patterns from all culture-positive tuberculosis cases diagnosed between January 1, 1995 and December 31, 2001. Logistic regression was used to compute maximum-likelihood estimates of odds ratios (ORs) and 95% confidence intervals (CIs) comparing cluster members with and without drug resistant isolates. In the universal DOT county, all patients received doses under direct observation of health department staff; whereas in selective DOT county, the majority of received patients doses under direct observation of health department staff, while some were able to self-administer doses.</p> <p>Results</p> <p>Isolates from 1,706 persons collected during 1,721 episodes of tuberculosis were genotyped. Cluster members from the selective DOT county were more than twice as likely than cluster members from the universal DOT county to have at least one isolate resistant to isoniazid, rifampin, and/or ethambutol (OR = 2.3, 95% CI: 1.7, 3.1). Selective DOT county isolates were nearly 5 times more likely than universal DOT county isolates to belong to clusters with at least 2 resistant isolates having identical resistance patterns (OR = 4.7, 95% CI: 2.9, 7.6).</p> <p>Conclusions</p> <p>Universal DOT for tuberculosis is associated with a decrease in the acquisition and transmission of resistant tuberculosis.</p

    Beta-Amyloid Peptides Enhance the Proliferative Response of Activated CD4+CD28+ Lymphocytes from Alzheimer Disease Patients and from Healthy Elderly

    Get PDF
    Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include Ξ²-amyloid (AΞ²)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble Ξ²-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble AΞ² peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that AΞ² peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of AΞ² peptides on the immune system of AD patients does not depend on the specific reactivity to AΞ² epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of AΞ² peptide-exposed T lymphocytes and affecting the immune system performance

    Mab21l2 Is Essential for Embryonic Heart and Liver Development

    Get PDF
    During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which Ξ±4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation

    Astrocyte-Derived Tissue Transglutaminase Interacts with Fibronectin: A Role in Astrocyte Adhesion and Migration?

    Get PDF
    An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin. Since there is evidence indicating that glial scars strongly inhibit both axon growth and (re)myelination in brain lesions, it is important to understand the factors that contribute to the interaction between astrocytes and ECM proteins. Tissue Transglutaminase (TG2) is a multifunctional enzyme with an ubiquitous tissue distribution, being clearly present within the brain. It has been shown that inflammatory cytokines can enhance TG2 activity. In addition, TG2 can mediate cell adhesion and migration and it binds fibronectin with high affinity. We therefore hypothesized that TG2 is involved in astrocyte-fibronectin interactions. Our studies using primary rat astrocytes show that intracellular and cell surface expression and activity of TG2 is increased after treatment with pro-inflammatory cytokines. Astrocyte-derived TG2 interacts with fibronectin and is involved in astrocyte adhesion onto and migration across fibronectin. TG2 is involved in stimulating focal adhesion formation which is necessary for the interaction of astrocytes with ECM proteins. We conclude that astrocyte-derived TG2 contributes to the interaction between astrocytes and fibronectin. It might thereby regulate ECM remodeling and possibly glial scarring
    • …
    corecore