143 research outputs found

    The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis

    Get PDF
    High aldehyde dehydrogenase (ALDH) activity can be used to identify tumor-initiating and metastasis-initiating cells in various human carcinomas, including prostate cancer. To date, the functional importance of ALDH enzymes in prostate carcinogenesis, progression and metastasis has remained elusive. Previously we identified strong expression of ALDH7A1 in human prostate cancer cell lines, primary tumors and matched bone metastases. In this study, we evaluated whether ALDH7A1 is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Knockdown of ALDH7A1 expression resulted in a decrease of the α2hi/αvhi/CD44+ stem/progenitor cell subpopulation in the human prostate cancer cell line PC-3M-Pro4. In addition, ALDH7A1 knockdown significantly inhibited the clonogenic and migratory ability of human prostate cancer cells in vitro. Furthermore, a number of genes/factors involved in migration, invasion and metastasis were affected including transcription factors (snail, snail2, and twist) and osteopontin, an ECM molecule involved in metastasis. Knockdown of ALDH7A1 resulted in decreased intra-bone growth and inhibited experimentally induced (bone) metastasis, while intra-prostatic growth was not affected. In line with these observations, evidence is presented that TGF-β, a key player in cancer invasiveness and bone metastasis, strongly induced ALDH activity while BMP7 (an antagonist of TGF-β signaling) down-regulated ALDH activity. Our findings show, for the first time, that the ALDH7A1 enzyme is functionally involved in the formation of bone metastases and that the effect appeared dependent on the microenvironment, i.e., bone versus prostate

    Therapeutic targets for bone metastases in breast cancer

    Get PDF
    Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer

    Dual FGF-2 and Intergrin α5β1 Signaling Mediate GRAF-Induced RhoA Inactivation in a Model of Breast Cancer Dormancy

    Get PDF
    Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin α5β1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin α5β1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin α5β1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin α5β1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin α5β1 by fibronectin

    The Role of the BMP Signaling Antagonist Noggin in the Development of Prostate Cancer Osteolytic Bone Metastasis

    Get PDF
    Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases

    Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays

    Get PDF
    BACKGROUND: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. CONCLUSIONS/SIGNIFICANCE: This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer

    Latent transforming growth factor binding protein 4 (LTBP4) is downregulated in mouse and human DCIS and mammary carcinomas

    Get PDF
    Transforming growth factor beta (TGF-) is able to inhibit the proliferation of epithelial cells and is involved in the carcinogenesis of mammary tumors. Three latent transforming growth factor- binding proteins (LTBPs) are known to modulate TGF- functions. The current study analyses the expression profiles of LTBP4, its isoforms LTBP1 and LTBP3, and TGF-1, TGF-2, TGF-3, and SMAD2, SMAD3 and SMAD4 in human and murine (WAP-TNP8) DCIS compared to invasive mammary tumors. Additionally mammary malignant (MCF7, Hs578T, MDA-MB361) and non malignant cell lines (Hs578BsT) were analysed. Microarray, q-PCR, immunoblot, immunohistochemistry and immunofluorescence were used. In comparison to non-malignant tissues (n = 5), LTBP4 was downregulated in all human and mouse DCIS (n = 9) and invasive mammary adenocarcinomas (n = 5) that were investigated. We also found decreased expression of bone morphogenic protein 4 (BMP4) and increased expression of its inhibitor gremlin (GREM1). Treatment of the mammary tumor cell line (Hs578T) with recombinant TGF-1 rescued BMP4 and GREM1 expression. We conclude that the lack of LTBP4-mediated targeting in malignant mammary tumor tissues may lead to a possible modification of TGF-1 and BMP bioavailability and function

    Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44<sup>+</sup>/CD24<sup>- </sup>stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44<sup>+</sup>/CD24<sup>- </sup>subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression?</p> <p>Methods</p> <p>Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment.</p> <p>Results</p> <p>MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (<it>PIK3R1</it>, <it>SOCS2</it>, <it>BMP7</it>, <it>CD44 </it>and <it>CD24</it>). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells.</p> <p>Conclusions</p> <p>MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.</p

    Prevention of depression and sleep disturbances in elderly with memory-problems by activation of the biological clock with light - a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression frequently occurs in the elderly and in patients suffering from dementia. Its cause is largely unknown, but several studies point to a possible contribution of circadian rhythm disturbances. Post-mortem studies on aging, dementia and depression show impaired functioning of the suprachiasmatic nucleus (SCN) which is thought to be involved in the increased prevalence of day-night rhythm perturbations in these conditions. Bright light enhances neuronal activity in the SCN. Bright light therapy has beneficial effects on rhythms and mood in institutionalized moderate to advanced demented elderly. In spite of the fact that this is a potentially safe and inexpensive treatment option, no previous clinical trial evaluated the use of long-term daily light therapy to prevent worsening of sleep-wake rhythms and depressive symptoms in early to moderately demented home-dwelling elderly.</p> <p>Methods/Design</p> <p>This study investigates whether long-term daily bright light prevents worsening of sleep-wake rhythms and depressive symptoms in elderly people with memory complaints. Patients with early Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) and Subjective Memory Complaints (SMC), between the ages of 50 and 75, are included in a randomized double-blind placebo-controlled trial. For the duration of two years, patients are exposed to ~10,000 lux in the active condition or ~300 lux in the placebo condition, daily, for two half-hour sessions at fixed times in the morning and evening. Neuropsychological, behavioral, physiological and endocrine measures are assessed at baseline and follow-up every five to six months.</p> <p>Discussion</p> <p>If bright light therapy attenuates the worsening of sleep-wake rhythms and depressive symptoms, it will provide a measure that is easy to implement in the homes of elderly people with memory complaints, to complement treatments with cholinesterase inhibitors, sleep medication or anti-depressants or as a stand-alone treatment.</p> <p>Trial registration</p> <p>ISRCTN29863753</p
    corecore