52 research outputs found
On thermodynamic modeling and the role of the second law of thermodynamics in geophysics
The article contains a brief review of elements of thermodynamic modeling in theoretical geophysics. We motivate the existence of the second law of thermodynamics in macroscopic theoretical physics and demonstrate its evaluation. In particular we show its consequences in the construction of constitutive laws for a two-component poroelastic medium. This construction is also related to microstructural properties verified by means of the second law
The Abdominal Circulatory Pump
Blood in the splanchnic vasculature can be transferred to the extremities. We quantified such blood shifts in normal subjects by measuring trunk volume by optoelectronic plethysmography, simultaneously with changes in body volume by whole body plethysmography during contractions of the diaphragm and abdominal muscles. Trunk volume changes with blood shifts, but body volume does not so that the blood volume shifted between trunk and extremities (Vbs) is the difference between changes in trunk and body volume. This is so because both trunk and body volume change identically with breathing and gas expansion or compression. During tidal breathing Vbs was 50–75 ml with an ejection fraction of 4–6% and an output of 750–1500 ml/min. Step increases in abdominal pressure resulted in rapid emptying presumably from the liver with a time constant of 0.61±0.1SE sec. followed by slower flow from non-hepatic viscera. The filling time constant was 0.57±0.09SE sec. Splanchnic emptying shifted up to 650 ml blood. With emptying, the increased hepatic vein flow increases the blood pressure at its entry into the inferior vena cava (IVC) and abolishes the pressure gradient producing flow between the femoral vein and the IVC inducing blood pooling in the legs. The findings are important for exercise because the larger the Vbs the greater the perfusion of locomotor muscles. During asystolic cardiac arrest we calculate that appropriate timing of abdominal compression could produce an output of 6 L/min. so that the abdominal circulatory pump might act as an auxiliary heart
Insight into the Stability of Cross-β Amyloid Fibril from VEALYL Short Peptide with Molecular Dynamics Simulation
Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of VEALYL hexamer. The statistical results indicate that hydrophobic residues play key roles in stabilizing VEALYL hexamer. Single point and two linkage mutants confirmed that Val1, Leu4, and Tyr5 of VEALYL are key residues. The consistency of the results for the VEALYL oligomer suggests that the intermediate states might be trimer (3-0) and pentamer(3-2). These results can help us to obtain an insight into the aggregation mechanism of amyloid fibril. These methods can be used to study the stability of amyloid fibril from other short peptides
Structure and Dynamics of Amyloid-β Segmental Polymorphisms
Conceived and designed the experiments: WB UH. Performed the experiments: WB. Analyzed the data: WB UH. Contributed reagents/materials/analysis tools: WB UH. Wrote the paper: WB UH.It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer’s disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer’s disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.Yeshttp://www.plosone.org/static/editorial#pee
College Women’s Feminist Identity: A Multidimensional Analysis with Implications for Coping with Sexism
This study examined components of women’s feminist identity and possible relations to their reported coping responses to sexism. A sample of 169 undergraduate women (M = 19.4 y, SD = 1.2) from diverse ethnic backgrounds completed surveys assessing their experiences and gender-related views. The first set of analyses revealed that women’s social gender identity, exposure to feminism, and gender-egalitarian attitudes independently contributed to feminist identification; moreover, non-stereotyping of feminists further predicted feminist self-identification. A second set of analyses tested the relative contribution of feminist identity components to women’s cognitive appraisals of coping responses to sexual harassment. Seeking social support was predicted by self-identification as a feminist (for White European American women only). Confronting was predicted by social gender identity, non-stereotyping of feminists, and public identification as a feminist. Findings highlight possible components of women’s feminist identity and their possible impact on coping responses to sexism
Recommended from our members
Nuclear structure towards N = 40 60Ca: in-beam γ-ray spectroscopy of 58,60Ti.
Excited states in the neutron-rich N = 38, 36 nuclei (60)Ti and (58)Ti were populated in nucleon-removal reactions from (61)V projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event by event for large Doppler shifts (v/c ∼ 0.4) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N = 36, 38 Fe and Cr toward the Ti and Ca isotones. In fact, (58,60)Ti provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly magic nucleus (60)Ca
Nuclear Structure Towards N=40 Ca60: In-Beam γ-Ray Spectroscopy of Ti58,60
Excited states in the neutron-rich N=38, 36 nuclei Ti60 and Ti58 were populated in nucleon-removal reactions from V61 projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event by event for large Doppler shifts (v/c∼0.4) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N=36, 38 Fe and Cr toward the Ti and Ca isotones. In fact, Ti58,60 provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly magic nucleus Ca60
- …