33 research outputs found

    Androgen Receptor Drives Cellular Senescence

    Get PDF
    The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Significance Communicating in ways that motivate engagement in social distancing remains a critical global public health priority during the COVID-19 pandemic. This study tested motivational qualities of messages about social distancing (those that promoted choice and agency vs. those that were forceful and shaming) in 25,718 people in 89 countries. The autonomy-supportive message decreased feelings of defying social distancing recommendations relative to the controlling message, and the controlling message increased controlled motivation, a less effective form of motivation, relative to no message. Message type did not impact intentions to socially distance, but people’s existing motivations were related to intentions. Findings were generalizable across a geographically diverse sample and may inform public health communication strategies in this and future global health emergencies. Abstract Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Ex-vivo cytoadherence phenotypes of Plasmodium falciparum strains from Malian children with hemoglobins A, S, and C

    No full text
    Sickle hemoglobin (Hb) S and HbC may protect against malaria by reducing the expression of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of parasitized red blood cells (RBCs), thereby weakening their cytoadherence to microvascular endothelial cells (MVECs) and impairing their activation of MVECs to produce pathological responses. Therefore, we hypothesized that parasites causing malaria in HbAS or HbAC heterozygotes have overcome this protective mechanism by expressing PfEMP1 variants which mediate relatively strong binding to MVECs. To test this hypothesis, we performed 31 cytoadherence comparisons between parasites from HbAA and HbAS (or HbAC) Malian children with malaria. Ring-stage parasites from HbAA and HbAS (or HbAC) children were cultivated to trophozoites, purified, and then inoculated in parallel into the same wildtype uninfected RBCs. After one cycle of invasion and maturation to the trophozoite stage expressing PfEMP1, parasite strains were compared for binding to MVECs. In this assay, there were no significant differences in the binding of parasites from HbAS and HbAC children to MVECs compared to those from HbAA children (HbAS, fold-change  = 1.46, 95% CI 0.97–2.19, p = 0.07; HbAC, fold-change  = 1.19, 95% CI 0.77–1.84, p = 0.43). These data suggest that in-vitro reductions in cytoadherence by HbS and HbC may not be selecting for expression of high-avidity PfEMP1 variants in vivo. Future studies that identify PfEMP1 domains or amino-acid motifs which are selectively expressed in parasites from HbAS children may provide further insights into the mechanism of malaria protection by the sickle-cell trait

    Ex-vivo cytoadherence phenotypes of Plasmodium falciparum strains from Malian children with hemoglobins A, S, and C

    No full text
    Sickle hemoglobin (Hb) S and HbC may protect against malaria by reducing the expression of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of parasitized red blood cells (RBCs), thereby weakening their cytoadherence to microvascular endothelial cells (MVECs) and impairing their activation of MVECs to produce pathological responses. Therefore, we hypothesized that parasites causing malaria in HbAS or HbAC heterozygotes have overcome this protective mechanism by expressing PfEMP1 variants which mediate relatively strong binding to MVECs. To test this hypothesis, we performed 31 cytoadherence comparisons between parasites from HbAA and HbAS (or HbAC) Malian children with malaria. Ring-stage parasites from HbAA and HbAS (or HbAC) children were cultivated to trophozoites, purified, and then inoculated in parallel into the same wildtype uninfected RBCs. After one cycle of invasion and maturation to the trophozoite stage expressing PfEMP1, parasite strains were compared for binding to MVECs. In this assay, there were no significant differences in the binding of parasites from HbAS and HbAC children to MVECs compared to those from HbAA children (HbAS, fold-change  = 1.46, 95% CI 0.97–2.19, p = 0.07; HbAC, fold-change  = 1.19, 95% CI 0.77–1.84, p = 0.43). These data suggest that in-vitro reductions in cytoadherence by HbS and HbC may not be selecting for expression of high-avidity PfEMP1 variants in vivo. Future studies that identify PfEMP1 domains or amino-acid motifs which are selectively expressed in parasites from HbAS children may provide further insights into the mechanism of malaria protection by the sickle-cell trait
    corecore