69 research outputs found

    A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Get PDF
    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies

    Successful bone marrow transplantation in a patient with Diamond-Blackfan anemia with co-existing Duchenne muscular dystrophy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Diamond-Blackfan anemia and Duchenne muscular dystrophy are two rare congenital anomalies. Both anomalies occurring in the same child is extremely rare. Allogeneic hematopoietic stem cell transplantation is a well-established therapy for Diamond-Blackfan anemia. However, in patients with Duchenne muscular dystrophy, stem cell therapy still remains experimental.</p> <p>Case presentation</p> <p>We report the case of a nine-year-old boy of north Indian descent with Diamond-Blackfan anemia and Duchenne muscular dystrophy who underwent successful allogeneic hematopoietic stem cell transplantation. He is transfusion-independent, and his Duchenne muscular dystrophy has shown no clinical deterioration over the past 45 months. His creatine phosphokinase levels have significantly decreased to 300 U/L from 14,000 U/L pre-transplant. The patient is 100% donor chimera in the hematopoietic system, and his muscle tissue has shown 8% to 10.4% cells of donor origin.</p> <p>Conclusion</p> <p>Our patient's Diamond-Blackfan anemia was cured by allogeneic hematopoietic stem cell transplantation. The interesting clinical observation of a possible benefit in Duchenne muscular dystrophy cannot be ruled out. However, further clinical follow-up with serial muscle biopsies and molecular studies are needed to establish this finding.</p

    Masking of Figure-Ground Texture and Single Targets by Surround Inhibition: A Computational Spiking Model

    Get PDF
    A visual stimulus can be made invisible, i.e. masked, by the presentation of a second stimulus. In the sensory cortex, neural responses to a masked stimulus are suppressed, yet how this suppression comes about is still debated. Inhibitory models explain masking by asserting that the mask exerts an inhibitory influence on the responses of a neuron evoked by the target. However, other models argue that the masking interferes with recurrent or reentrant processing. Using computer modeling, we show that surround inhibition evoked by ON and OFF responses to the mask suppresses the responses to a briefly presented stimulus in forward and backward masking paradigms. Our model results resemble several previously described psychophysical and neurophysiological findings in perceptual masking experiments and are in line with earlier theoretical descriptions of masking. We suggest that precise spatiotemporal influence of surround inhibition is relevant for visual detection

    Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors

    Get PDF
    Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models
    corecore