5 research outputs found
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function
Nash equilibria for the multi-agent project scheduling problem with controllable processing times
International audienceThis paper considers a project scheduling environment in which the activities of the project network are partitioned among a set of agents. Activity durations are controllable, i.e., every agent is allowed to shorten the duration of its activities, incurring a crashing cost. If the project makespan is reduced with respect to its normal value, a reward is offered to the agents and each agent receives a given ratio of the total reward. Agents want to maximize their profit. Assuming a complete knowledge of the agents' parameters and of the activity network, this problem is modeled as a non-cooperative game and Nash equilibria are analyzed. We characterize Nash equilibria in terms of the existence of certain types of cuts on the project network. We show that finding one Nash equilibrium is easy, while finding a Nash strategy that minimizes the project makespan is NP-hard in the strong sense. The particular case where each activity belongs to a different agent 1 is also studied and some polynomial-time algorithms are proposed for this case