16,392 research outputs found

    Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes

    Get PDF
    postprintThe 18th Joint Annual Meeting of ISMRM-ESMRMB, Stockholm, Sweden, 1-7 May 2010

    Public health responses to influenza in care homes: a questionnaire-based study of local Health Protection Units.

    No full text
    BACKGROUND: Influenza virus infection poses a major threat to the elderly people in residential care. We sought to describe the extent to which local public health services in England were positioned to detect and respond effectively to influenza-like illness (ILI) in nursing homes. METHODS: A questionnaire-based survey was conducted in all 34 Health Protection Units (HPUs) regarding the 2004-05 influenza season. RESULTS: Of the 20 responses, half reported 24 outbreaks of ILI in care homes. The mean resident population attack rate was 41% (range 15-79) with 31 deaths. Staff ILI occurred in 23 of 24 outbreaks. Seven of 20 HPUs stated that a local policy for the management of ILI in nursing homes was in place, with only four specifying the use of neuraminidase inhibitors (NI) for treatment of cases and prophylaxis of residents. In the outbreaks reported, NIs were used for treatment and prophylaxis, respectively, in only 46 and 54% of instances. CONCLUSIONS: Given the availability of effective interventions for treatment and prophylaxis, there is potential to prevent substantial morbidity and mortality from influenza in at-risk populations. This study suggests that challenges remain in the effective response to influenza outbreaks in care homes and that there are wide variations in practice at local level

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Preparation of distilled and purified continuous variable entangled states

    Full text link
    The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation

    The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling

    Get PDF
    The kinases MSK1 and MSK2 are activated 'downstream' of the p38 and Erk1/2 mitogen-activated protein kinases. Here we found that MSK1 and MSK2 were needed to limit the production of proinflammatory cytokines in response to stimulation of primary macrophages with lipopolysaccharide. By inducing transcription of the mitogen-activated protein kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10, MSK1 and MSK2 exerted many negative feedback mechanisms. Deficiency in MSK1 and MSK2 prevented the binding of phosphorylated transcription factors CREB and ATF1 to the promoters of the genes encoding interleukin 10 and DUSP1. Mice doubly deficient in MSK1 and MSK2 were hypersensitive to lipopolysaccharide-induced endotoxic shock and showed prolonged inflammation in a model of toxic contact eczema induced by phorbol 12-myristate 13-acetate. Our results establish MSK1 and MSK2 as key components of negative feedback mechanisms needed to limit Toll-like receptor-driven inflammation.</p

    Tuning a Circular p-n Junction in Graphene from Quantum Confinement to Optical Guiding

    Full text link
    The motion of massless Dirac-electrons in graphene mimics the propagation of photons. This makes it possible to control the charge-carriers with components based on geometrical-optics and has led to proposals for an all-graphene electron-optics platform. An open question arising from the possibility of reducing the component-size to the nanometer-scale is how to access and understand the transition from optical-transport to quantum-confinement. Here we report on the realization of a circular p-n junction that can be continuously tuned from the nanometer-scale, where quantum effects are dominant, to the micrometer scale where optical-guiding takes over. We find that in the nanometer-scale junction electrons are trapped in states that resemble atomic-collapse at a supercritical charge. As the junction-size increases, the transition to optical-guiding is signaled by the emergence of whispering-gallery modes and Fabry-Perot interference. The creation of tunable junctions that straddle the crossover between quantum-confinement and optical-guiding, paves the way to novel design-architectures for controlling electronic transport.Comment: 16 pages, 4 figure

    Jacobi-Predictor-Corrector Approach for the Fractional Ordinary Differential Equations

    Full text link
    We present a novel numerical method, called {\tt Jacobi-predictor-corrector approach}, for the numerical solution of fractional ordinary differential equations based on the polynomial interpolation and the Gauss-Lobatto quadrature w.r.t. the Jacobi-weight function ω(s)=(1s)α1(1+s)0\omega(s)=(1-s)^{\alpha-1}(1+s)^0. This method has the computational cost O(N) and the convergent order ININ, where NN and ININ are, respectively, the total computational steps and the number of used interpolating points. The detailed error analysis is performed, and the extensive numerical experiments confirm the theoretical results and show the robustness of this method.Comment: 24 pages, 5 figure
    corecore