16 research outputs found

    A Systematic Review of Three-Dimensional Printing in Liver Disease

    Get PDF
    The purpose of this review is to analyse current literature related to the clinical applications of 3D printed models in liver disease. A search of the literature was conducted to source studies from databases with the aim of determining the applications and feasibility of 3D printed models in liver disease. 3D printed model accuracy and costs associated with 3D printing, the ability to replicate anatomical structures and delineate important characteristics of hepatic tumours, and the potential for 3D printed liver models to guide surgical planning are analysed. Nineteen studies met the selection criteria for inclusion in the analysis. Seventeen of them were case reports and two were original studies. Quantitative assessment measuring the accuracy of 3D printed liver models was analysed in five studies with mean difference between 3D printed models and original source images ranging from 0.2 to 20%. Fifteen studies provided qualitative assessment with results showing the usefulness of 3D printed models when used as clinical tools in preoperative planning, simulation of surgical or interventional procedures, medical education, and training. The cost and time associated with 3D printed liver model production was reported in 11 studies, with costs ranging from US13toUS13 to US2000, duration of production up to 100 h. This systematic review shows that 3D printed liver models demonstrate hepatic anatomy and tumours with high accuracy. The models can assist with preoperative planning and may be used in the simulation of surgical procedures for the treatment of malignant hepatic tumours

    Intranasal Delivery of Cholera Toxin Induces Th17-Dominated T-Cell Response to Bystander Antigens

    Get PDF
    Cholera toxin (CT) is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2) response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses
    corecore