49 research outputs found

    Clustering of health and risk behaviour in immigrant and indigenous Dutch residents aged 19–40 years

    Get PDF
    Objectives\ud Studies on the co-occurrence, ‘clustering’ of health and other risk behaviours among immigrants from non-industrialised countries lack until now. The aim of this study was to compare this clustering in immigrant and indigenous adults.\ud \ud Methods\ud A representative sample (N = 2,982; response 71%) of the Dutch population aged 19–40, with 247 respondents from non-industrialized countries (Turkey, Morocco, Surinam, Netherlands Antilles), was asked about health behaviours (alcohol, smoking, drugs, unsafe sex, exercise, nutrition, sleep behaviour, traffic behaviour), and about rule-breaking behaviour and aggression. Data were collected using internet questionnaires, which excluded respondents unable to read Dutch.\ud \ud Results\ud Among indigenous adults, health and risk behaviours co-occur in three clusters (alcohol, health-enhancing behaviour, and rule-breaking behaviour), whereas among immigrant groups two clusters were found (alcohol and rule-breaking behaviour/smoking). Differences mostly concerned health-enhancing behaviours such as nutrition, which was not part of any cluster, and physical activity.\ud \ud Conclusions\ud This supports an integrated promotion of healthier lifestyles to immigrants who are able to read Dutch. Regarding potentially risky behaviours like alcohol use and rule-breaking behaviours, this could be similar to that for indigenous people\u

    Regional differences in prostaglandin E₂ metabolism in human colorectal cancer liver metastases

    Get PDF
    Background: Prostaglandin (PG) E₂ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE₂ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE₂ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE₂ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE₂ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. Results: PGE₂ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE₂. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGE₂ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE₂ metabolism should be targeted for novel treatment of advanced CRC

    Evidence for 'critical slowing down' in seagrass:a stress gradient experiment at the southern limit of its range

    Get PDF
    The theory of critical slowing down, i.e. the increasing recovery times of complex systems close to tipping points, has been proposed as an early warning signal for collapse. Empirical evidence for the reality of such warning signals is still rare in ecology. We studied this on Zostera noltii intertidal seagrass meadows at their southern range limit, the Banc d'Arguin, Mauritania. We analyse the environmental covariates of recovery rates using structural equation modelling (SEM), based on an experiment in which we assessed whether recovery after disturbances (i.e. seagrass & infauna removal) depends on stress intensity (increasing with elevation) and disturbance patch size (1 m(2) vs. 9 m(2)). The SEM analyses revealed that higher biofilm density and sediment accretion best explained seagrass recovery rates. Experimental disturbances were followed by slow rates of recovery, regrowth occurring mainly in the coolest months of the year. Macrofauna recolonisation lagged behind seagrass recovery. Overall, the recovery rate was six times slower in the high intertidal zone than in the low zone. The large disturbances in the low zone recovered faster than the small ones in the high zone. This provides empirical evidence for critical slowing down with increasing desiccation stress in an intertidal seagrass system
    corecore