9 research outputs found

    Twenty-five milligrams of clomiphene citrate presents positive effect on treatment of male testosterone deficiency - a prospective study

    No full text
    INTRODUCTION: Male testosterone deficiency is associated with bad sexual function and quality of life (QoL). The aim of this study was to determine whether a daily dose of 25 mg clomiphene citrate (CC) is effective in stimulating the endogenous testosterone production pathway and to address the applicability of this medication as a therapeutic option for symptomatic hypogonadism. MATERIALS AND METHODS: This was a prospective study. Men with low sexual desire and testosterone levels (T) below 400 ng/dL were selected to receive CC. Blood samples were obtained to determine baseline measurements of serum T, estradiol, LH, lipid profile and fasting plasma glucose. Each patient was treated with a daily dose of 25 mg CC for at least 3 months. Patients were asked if they experienced any side effects related to the use of CC and if they experienced any improvement in their sexual profile. Paired samples T-test was utilized to analyze responses to therapy. RESULTS: Our cohort consisted of 125 men with hypogonadism and low libido. Mean age was 62 years (± 11.1 years). Serum T levels ranged from 309 ng/dL (baseline, mean value) to 642 ng/dL (3 months after CC initiation, mean value) (p < 0.001). Serum cholesterol levels ranged from 197 to 186 mg/dL (p = 0.003). There were no statistically significant differences when comparing pre and post-treatment HDL-Cholesterol, triglycerides, fasting plasma glucose and prolactin. All men reported improvements in the post-treatment QoL scores. No serious adverse events were recorded. CONCLUSIONS: The CC was effective in stimulating the endogenous production of testosterone. A lower level of total cholesterol was verified after three months of treatment. This medication should be considered as a therapeutic option for some patients with symptomatic male testosterone deficiency

    Surface conditioning with <em>Escherichia coli</em> cell wall components can reduce biofilm formation by decreasing initial adhesion

    No full text

    Surface conditioning with <em>Escherichia coli</em> cell wall components can reduce biofilm formation by decreasing initial adhesion

    Get PDF
    Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that <em>E. coli</em> cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on <em>E. coli</em> biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time

    Recombinant protein expression in biofilms

    No full text
    corecore