27 research outputs found

    Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria

    Get PDF
    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future

    Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function

    No full text
    Planctomycetes form a distinct phylum of the domain Bacteria and possess unusual features such as intracellular compartmentalization and a lack of peptidoglycan in their cell walls. Remarkably, cells of the genus Gemmata even contain a membrane-bound nucleoid analogous to the eukaryotic nucleus. Moreover, the so-called 'anammox' planctomycetes have a unique anaerobic, autotrophic metabolism that includes the ability to oxidize ammonium; this process is dependent on a characteristic membrane-bound cell compartment called the anammoxosome, which might be a functional analogue of the eukaryotic mitochondrion. The compartmentalization of planctomycetes challenges our hypotheses regarding the origins of eukaryotic organelles. Furthermore, the recent discovery of both an endocytosis-like ability and proteins homologous to eukaryotic clathrin in a planctomycete marks this phylum as one to watch for future research on the origin and evolution of the eukaryotic cell
    corecore