72 research outputs found
Intermittent Hypoxia-Induced Cognitive Deficits Are Mediated by NADPH Oxidase Activity in a Murine Model of Sleep Apnea
Background: In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction. Methods and Findings: The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox _/Y) and wild-type littermates. On a standard place training task, gp91phox _/Y displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox _/Y mice. Additionally, wild-type mice, but not gp91phox _/Y mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures. Conclusions: The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provid
Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea
Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is
usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of
oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which
occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation
(SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied.
The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring
interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA.
Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively
subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was
instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse
oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2
and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA.
Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE]
and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial
SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly
lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of
PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9
mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first
apnea dip, respectively.
Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring
interruption of O2 supply induced by obstructive apneas mimicking OSA
Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene
<p>Abstract</p> <p>Background</p> <p>Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We <it>hypothesized </it>that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis.</p> <p>Methods</p> <p>Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test.</p> <p>Results</p> <p>All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice.</p> <p>Conclusions</p> <p>We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression.</p
A Molecular Signature of Proteinuria in Glomerulonephritis
Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis
Controversies in the Use of MIGS
Abstract
Minimally invasive glaucoma surgery (MIGS) has fulfilled an unmet need in the management of glaucoma. This chapter highlights some controversial issues regarding the use of MIGS in clinical practice, including (1) whether there is sufficient evidence to advocate combining MIGS with cataract surgery over cataract surgery alone, (2) the merits and drawbacks of different approaches to trabecular bypass and canal-based MIGS procedures, (3) the effect of MIGS on endothelial cell loss, (4) suprachoroidal MIGS devices and whether there is still a role for these procedures, and (5) a comparison between subconjunctival MIGS and trabeculectomy. Several questions are still left unanswered and hopefully, further research and more clinical experience with these new technologies will help improve surgical outcomes for patients
Compact Hybrid-Integrated Circular Polarized Double-Ring Antenna for Satellite Application
Intermittent Hypoxia during Development Induces Long-Term Alterations in Spatial Working Memory, Monoamines, and Dendritic Branching in Rat Frontal Cortex
- …
