8 research outputs found
An angiopoietin 2, FGF23, and BMP10 biomarker signature differentiates atrial fibrillation from other concomitant cardiovascular conditions
Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n=933) and validated in the remaining patients (n=552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation
Investigating the potential for reversal of myofibroblast activation in human cardiac fibroblasts in 2D culture
Abstract
Funding Acknowledgements
Type of funding sources: Public Institution(s). Main funding source(s): BHF MRC
Introduction
Cardiac fibroblasts (cFbs) are responsible for deposition of extracellular matrix in the heart, providing support to the contracting myocardium and contributing to a myriad of physiological signalling processes. Prolonged and excessive activation of cFbs, via stimulation by transforming growth factor β (TGF-β), causes conversion of cFbs into myofibroblasts. Myofibroblasts are believed to cause pathological cardiac remodelling and to contribute to heart failure and arrhythmias. Reversion of myofibroblasts into cFbs has been demonstrated in rodent cells; it has yet to be explored in human cells.
Purpose
To characterise the effects of long-term 2D standard culture on the activation status of human cFbs. To identify the potential for human myofibroblasts to dedifferentiate back to cFbs.
Methods
Primary human cFbs were cultured in Corning Costar flasks (Young’s modulus E = ∼3GPa) for up to 10 passages. Cells were subsequently plated onto dishes with a Young’s modulus of ∼3GPa, 25kPa and 2kPa in the presence or absence of TGF-β (10ng/ml) and/or TGF-β receptor I inhibitor SD208 (10nM) for up to 4 days. The proliferative capacity of the cells was assessed using the CyQUANT NF® assay. Cells were assessed for mRNA and protein expression of myofibroblast activation markers α-smooth muscle actin (α-SMA) and collagen-1 by qPCR and western blotting. The localised distribution of α-SMA was assessed by confocal microscopy.
Results
Human cardiac fibroblasts robustly expressed α-SMA. Proliferation was significantly decreased at 2kPa compared to higher Young’s moduli (mean percentage change over 2 days: 2kPa = 115.1, 25kPa = 191.4, 3GPa = 205.9, p < 0.0001). qPCR analysis revealed no significant changes in expression of myofibroblast gene markers α-SMA and collagen 1 at either ∼3GPa, 25kPa or 2kPa Young’s Moduli in the presence or absence of TGF-β treatment (median fold change (interquartile range [IQR]) versus control: TGF-β(α-SMA, 3GPa) = 1.226 (0.820); TGF-β(Collagen 1, 3GPa) = 1.636 (1.403); TGF-β(α-SMA, 25kPa) = 1.069 (7.030); TGF-β(Collagen 1, 25kPa) = 1.103 (0.411); TGF-β(α-SMA, 2kPa) = 0.800 (5.021); TGF-β(Collagen 1, 2kPa) = 1.629 (7.092); n = 2-3). These data was confirmed by western blotting (median relative protein expression (IQR) versus control: TGF-β(α-SMA, 3GPa) = 1.012 (0.500); TGF-β(Collagen 1, 3GPa) = 1.008 (1.466); TGF-β(α-SMA, 25kPa) = 1.321 (2.282); TGF-β(Collagen 1, 25kPa) = 0.944 (1.125); TGF-β(α-SMA, 2kPa) = 1.142 (0.705); TGF-β(Collagen 1, 2kPa) = 0.283 (1.127), p > 0.05; n = 2-3). TGF-β or SD208 treatment did not affect α-SMA expression when assessed by confocal microscopy.
Conclusions
Long-term culture of human cFbs in 2D format leads to a robust and persistent activation of myofibroblasts that is unresponsive to TGF-ß activation or inhibition. Ongoing work is focussed on investigating whether human myofibroblast de-differentiation is possible.
</jats:sec
Increased early sodium current causes familial atrial fibrillation and dampens effect of flecainide
Abstract(1)AimsAtrial fibrillation (AF) is the most common cardiac arrhythmia. Pathogenic variants in genes encoding ion channels are associated with familial AF. The point mutation M1875T in the SCN5A gene, which encodes the α-subunit of the cardiac sodium channel Nav1.5, has been associated with increased atrial excitability and familial AF.(2)MethodsWe designed a new murine model carrying the Scn5a-M1875T mutation enabling us to study the effects of the Nav1.5 mutation in detail in vivo and in vitro using patch clamp and microelectrode recording of atrial cardiomyocytes, optical mapping, ECG, echocardiography, gravimetry, histology and biochemistry.(3)ResultsAtrial cardiomyocytes from newly generated adult Scn5a-M1875T+/- mice showed a selective increase in the early (peak) cardiac sodium current, larger action potential amplitude and a faster peak upstroke velocity. Conduction slowing caused by the sodium channel blocker flecainide was less pronounced in Scn5a-M1875T+/- compared to wildtype atria. Overt hypertrophy or heart failure in Scn5a-M1875T+/- mice could be excluded.(4)ConclusionThe Scn5a-M1875T point mutation causes gain-of-function of the cardiac sodium channel. Our results suggest increased atrial peak sodium current as a potential trigger for increased atrial excitability and thus AF.What’s newThe point mutation M1875T in the C-terminal domain of the cardiac sodium channel Nav1.5 causes an increase in early peak sodium current in left atria.The observed changes induced by this point mutation suggest an increase in peak sodium current as a cause of familial atrial fibrillation (AF).Our findings provide a possible explanation for the variable effectiveness of sodium channel blockers in patients with AF. Carriers of such sodium channel gain-of-function mutations may benefit more from tailored treatments.Graphical abstract</jats:sec
The emerging role of ADAM metalloproteinases in immunity
Proteolysis is an irreversible physiological process that can result in the termination or activation of protein function. Many transmembrane proteins that are involved in the cellular communication between immune cells and structural cells-for example, Notch, CD23, CD44, and membrane-anchored cytokines and their receptors-are cleaved by the ADAM (a disintegrin and metalloproteinase) family of enzymes. Here, we review recent insights into the molecular activation, substrate specificity and function of ADAM proteins in the development and regulation of the immune system, with a particular focus on the roles of ADAM10 and ADAM17
