27 research outputs found

    Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM) competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (T<sub>max</sub> range: 32°C to 40°C); simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques.</p> <p>Methods</p> <p>Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, <it>n</it> = 74) and control (CON, <it>n</it> = 12) through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM), hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5.</p> <p>Results</p> <p>Water (overall mean (SD): total daily 7.7 (1.5) L/day, during running 732 (183) ml/h) and sodium (total daily 3.9 (1.3) g/day, during running 270 (151) mg/L) ingestion did not differ between stages in UER (<it>p</it> < 0.001 <it>vs</it>. CON). Exercise-induced BM loss was 2.4 (1.2)% (<it>p</it> < 0.001). Pre- to post-stage BM gains were observed in 26% of UER along competition. Pre- and post-stage plasma osmolality remained within normal clinical reference range (280 to 303 mOsmol/kg) in the majority of UER (<it>p</it> > 0.05 <it>vs</it>. CON pre-stage). Asymptomatic hyponatraemia (<135 mmol/L) was evident pre- and post-stage in <it>n</it> = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (<it>p</it> < 0.001) as competition progressed in UER, with no change in CON. Plasma volume and extra-cellular water increased (<it>p</it> < 0.001) 22.8% and 9.2%, respectively, from pre-Stage 1 to 5 in UER, with no change in CON.</p> <p>Conclusion</p> <p>Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.</p

    Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Get PDF
    BACKGROUND: Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS: Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION: These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals

    Severe malaria is associated with parasite binding to endothelial protein C receptor

    Get PDF
    Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions. © 2013 Macmillan Publishers Limited. All rights reserved
    corecore