21 research outputs found

    The first transcriptome of Italian wall lizard, a new tool to infer about the Island Syndrome

    Get PDF
    Some insular lizards show a high degree of differentiation from their conspecific mainland populations, like Licosa island lizards, which are described as affected by Reversed Island Syndrome (RIS). In previous works, we demonstrated that some traits of RIS, as melanization, depend on a differential expression of gene encoding melanocortin receptors. To better understand the basis of syndrome, and providing raw data for future investigations, we generate the first de novo transcriptome of the Italian wall lizard. Comparing mainland and island transcriptomes, we link differences in life-traits to differential gene expression. Our results, taking together testis and brain sequences, generated 275,310 and 269,885 transcripts, 18,434 and 21,606 proteins in Gene Ontology annotation, for mainland and island respectively. Variant calling analysis identified about the same number of SNPs in island and mainland population. Instead, through a differential gene expression analysis we found some putative genes involved in syndrome more expressed in insular samples like Major Histocompatibility Complex class I, Immunoglobulins, Melanocortin 4 receptor, Neuropeptide Y and Proliferating Cell Nuclear Antigen

    Trace elements in hemodialysis patients: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.</p> <p>Methods</p> <p>All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.</p> <p>Results</p> <p>We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.</p> <p>Conclusion</p> <p>Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.</p

    Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas

    Full text link
    The value of perfusion and diffusion-weighted MRI in differentiating histological subtypes according to the 2007 WHO glioma classification scheme (i.e. astrocytoma vs. oligodendroglioma) and genetic subtypes according to the 2016 WHO reclassification (e.g. 1p/19q co-deletion and IDH1 mutation status) in WHO grade II and III diffuse gliomas remains controversial. In the current study, we describe unique perfusion and diffusion MR signatures between histological and genetic glioma subtypes. Sixty-five patients with 2007 histological designations (astrocytomas and oligodendrogliomas), 1p/19q status (+ = intact/- = co-deleted), and IDH1 mutation status (MUT/WT) were included in this study. In all patients, median relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) were estimated within T2 hyperintense lesions. Bootstrap hypothesis testing was used to compare subpopulations of gliomas, separated by WHO grade and 2007 or 2016 glioma classification schemes. A multivariable logistic regression model was also used to differentiate between 1p19q+ and 1p19q- WHO II-III gliomas. Neither rCBV nor ADC differed significantly between histological subtypes of pure astrocytomas and pure oligodendrogliomas. ADC was significantly different between molecular subtypes (p = 0.0016), particularly between IDHWT and IDHMUT/1p19q+ (p = 0.0013). IDHMUT/1p19q+ grade III gliomas had higher median ADC; IDHWT grade III gliomas had higher rCBV with lower ADC; and IDHMUT/1p19q- had intermediate rCBV and ADC values, similar to their grade II counterparts. A multivariable logistic regression model was able to differentiate between IDHWT and IDHMUT WHO II and III gliomas with an AUC of 0.84 (p &lt; 0.0001, 74% sensitivity, 79% specificity). Within IDHMUT WHO II-III gliomas, a separate multivariable logistic regression model was able to differentiate between 1p19q+ and 1p19q- WHO II-III gliomas with an AUC of 0.80 (p = 0.0015, 64% sensitivity, 82% specificity). ADC better differentiated between genetic subtypes of gliomas according to the 2016 WHO guidelines compared to the classification scheme outlined in the 2007 WHO guidelines based on histological features of the tissue. Results suggest a combination of rCBV, ADC, T2 hyperintense volume, and presence of contrast enhancement together may aid in non-invasively identifying genetic subtypes of diffuse gliomas

    EVOLUTION OF ANTIGEN BINDING RECEPTORS

    Full text link
    This review addresses issues related to the evolution of the complex multigene families of antigen binding receptors that function in adaptive immunity. Advances in molecular genetic technology now permit the study of immunoglobulin (Ig) and T cell receptor (TCR) genes in many species that are not commonly studied yet represent critical branch points in vertebrate phylogeny. Both Ig and TCR genes have been defined in most of the major lineages of jawed vertebrates, including the cartilaginous fishes, which represent the most phylogenetically divergent jawed vertebrate group relative to the mammals. Ig genes in cartilaginous fish are encoded by multiple individual loci that each contain rearranging segmental elements and constant regions. In some loci, segmental elements are joined in the germline, i.e. they do not undergo genetic rearrangement. Other major differences in Ig gene organization and the mechanisms of somatic diversification have occurred throughout vertebrate evolution. However, relating these changes to adaptive immune function in lower vertebrates is challenging. TCR genes exhibit greater sequence diversity in individual segmental elements than is found in Ig genes but have undergone fewer changes in gene organization, isotype diversity, and mechanisms of diversification. As of yet, homologous forms of antigen binding receptors have not been identified in jawless vertebrates; however, acquisition of large amounts of structural data for the antigen binding receptors that are found in a variety of jawed vertebrates has defined shared characteristics that provide unique insight into the distant origins of the rearranging gene systems and their relationships to both adaptive and innate recognition processes

    A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice

    Get PDF
    corecore