165 research outputs found

    Aortic dissection at the University hospital of the West Indies: A 20-year clinicopathological study of autopsy cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An autopsy study of aortic dissection (AD) at our institution was previously reported. In the approximately 20 years since then, however, many aspects of diagnosis and treatment of this disease have changed, with a fall in mortality reported in many centers around the world. An impression amongst our pathologists that, there might be an increase in the prevalence of AD in the autopsy service at our hospital, since that earlier report, led to this repeated study, in an attempt to validate that notion. We also sought to identify any changes in clinicopathological features between the two series or any occurring during this study period itself.</p> <p>Findings</p> <p>All cases of AD identified at autopsy, during the 20-year period since the conclusion of the last study, were collected and pertinent clinical and pathological data were analyzed and compared, both within the two decades of this study period and against the results of the last study.</p> <p>Fifty-six cases comprised this study group including 36 males and 20 females, with a mean age of 63.9 years. There were, more patients in the second decade (n = 33; 59%) compared with the first decade (n = 23; 41%). Hypertension as a risk factor was identified in 52 (93%) cases and rupture occurred in 49 (88%) cases. A clinical diagnosis of AD was considered prior to surgery or autopsy in 25 (45%) cases overall, more during the second decade. Surgery was attempted in 25% of all cases with an increase in the second decade compared with the first.</p> <p>Conclusions</p> <p>Compared with the earlier review, a variety of changes in the profile of patients with AD in the autopsy service has been noted, including a reversal in the female predominance seen previously. Other observations include an increase in cases where the correct clinical diagnosis was considered and in which surgical treatment was attempted, changes also evident when the second decade of the present study was compared with the earlier decade. Overall, there were many positive trends. However, areas that could still be improved include an increased index of suspicion for the diagnosis of AD and perhaps in the initiation of treatment, earlier, in those cases where the correct diagnosis was considered.</p

    Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome

    Get PDF
    The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An oligonucleotide microarray assayed 40 tumour samples from ER(+)/HER2(βˆ’), ER(+)/HER2(+), ER(βˆ’)/HER2(+), and ER(βˆ’)/HER2(βˆ’) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57 (8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5. Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P=0.001) and higher histological grades (P=0.049). E2F-5-positive cancers were found more frequently in ER(βˆ’)/progesterone receptor (PgR)(βˆ’)/HER2(βˆ’) cancer samples (51.9%, P=0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P=0.0012). Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers. In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(βˆ’)/PgR(βˆ’)/HER2(βˆ’) status, a basal phenotype, and a worse clinical outcome

    Inhibition of Electrical Activity by Retroviral Infection with Kir2.1 Transgenes Disrupts Electrical Differentiation of Motoneurons

    Get PDF
    Network-driven spontaneous electrical activity in the chicken spinal cord regulates a variety of developmental processes including neuronal differentiation and formation of neuromuscular structures. In this study we have examined the effect of chronic inhibition of spinal cord activity on motoneuron survival and differentiation. Early spinal cord activity in chick embryos was blocked using an avian replication-competent retroviral vector RCASBP (B) carrying the inward rectifier potassium channel Kir2.1. Chicken embryos were infected with one of the following constructs: RCASBP(B), RCASBP(B)-Kir2.1, or RCASBP(B)-GFP. Infection of chicken embryos at E2 resulted in widespread expression of the viral protein marker p27 gag throughout the spinal cord. Electrophysiological recordings revealed the presence of functional Kir2.1 channels in RCASBP(B)-Kir2.1 but not in RCASBP(B)-infected embryos. Kir2.1 expression significantly reduced the generation of spontaneous motor movements in chicken embryos developing in ovo. Suppression of spontaneous electrical activity was not due to a reduction in the number of surviving motoneurons or the number of synapses in hindlimb muscle tissue. Disruption of the normal pattern of activity in chicken embryos resulted in a significant downregulation in the functional expression of large-conductance Ca2+-dependent K+ channels. Reduction of spinal cord activity also generates a significant acceleration in the inactivation rate of A-type K+ currents without any significant change in current density. Kir2.1 expression did not affect the expression of voltage-gated Na+ channels or cell capacitance. These experiments demonstrate that chronic inhibition of chicken spinal cord activity causes a significant change in the electrical properties of developing motoneurons

    Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology has unveiled transcriptomic differences among tumors of various phenotypes, and, especially, brought great progress in molecular understanding of phenotypic diversity of breast tumors. However, compared with the massive knowledge about the transcriptome, we have surprisingly little knowledge about regulatory mechanisms underling transcriptomic diversity.</p> <p>Results</p> <p>To gain insights into the transcriptional programs that drive tumor progression, we integrated regulatory sequence data and expression profiles of breast cancer into a Bayesian Network, and searched for <it>cis</it>-regulatory motifs statistically associated with given histological grades and prognosis. Our analysis found that motifs bound by ELK1, E2F, NRF1 and NFY are potential regulatory motifs that positively correlate with malignant progression of breast cancer.</p> <p>Conclusion</p> <p>The results suggest that these 4 motifs are principal regulatory motifs driving malignant progression of breast cancer. Our method offers a more concise description about transcriptome diversity among breast tumors with different clinical phenotypes.</p

    The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback

    Get PDF
    The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes

    A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade

    Get PDF
    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation
    • …
    corecore