43 research outputs found

    Functional central limit theorems for vicious walkers

    Full text link
    We consider the diffusion scaling limit of the vicious walker model that is a system of nonintersecting random walks. We prove a functional central limit theorem for the model and derive two types of nonintersecting Brownian motions, in which the nonintersecting condition is imposed in a finite time interval (0,T](0,T] for the first type and in an infinite time interval (0,∞)(0,\infty) for the second type, respectively. The limit process of the first type is a temporally inhomogeneous diffusion, and that of the second type is a temporally homogeneous diffusion that is identified with a Dyson's model of Brownian motions studied in the random matrix theory. We show that these two types of processes are related to each other by a multi-dimensional generalization of Imhof's relation, whose original form relates the Brownian meander and the three-dimensional Bessel process. We also study the vicious walkers with wall restriction and prove a functional central limit theorem in the diffusion scaling limit.Comment: AMS-LaTeX, 20 pages, 2 figures, v6: minor corrections made for publicatio

    Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs

    Full text link
    The complex analytic methods have found a wide range of applications in the study of multiplicity-free representations. This article discusses, in particular, its applications to the question of restricting highest weight modules with respect to reductive symmetric pairs. We present a number of multiplicity-free branching theorems that include the multiplicity-free property of some of known results such as the Clebsh--Gordan--Pieri formula for tensor products, the Plancherel theorem for Hermitian symmetric spaces (also for line bundle cases), the Hua--Kostant--Schmid KK-type formula, and the canonical representations in the sense of Vershik--Gelfand--Graev. Our method works in a uniform manner for both finite and infinite dimensional cases, for both discrete and continuous spectra, and for both classical and exceptional cases

    Fully commutative elements in finite and affine Coxeter groups

    No full text
    37 pages, 27 figuresInternational audienceAn element of a Coxeter group WW is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley--Lieb algebra. In this work we deal with any finite or affine Coxeter group WW, and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley--Lieb algebra has linear growth

    Lattice of dominant weights of affine Kac–Moody algebras

    No full text
    corecore