4,159 research outputs found

    Silicon Tetrafluoride on Io

    Full text link
    Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F - bearing species in low temperature volcanic gases on Io (Schaefer and Fegley, 2005b). SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ~ 266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 micron band as done on Earth.Comment: 16 pages, 2 figures, 1 table; Icarus, in pres

    Operational limitations in flying noise- abatement approaches

    Get PDF
    Operational limitations in flying noise abatement approache

    NASA research on noise-abatement approach profiles for multiengine jet transport aircraft

    Get PDF
    NASA research on noise-abatement steepened approaches for multiengine jet transport

    Personal Disqualifications of Administrators

    Get PDF

    Alkali and Halogen Chemistry in Volcanic Gases on Io

    Full text link
    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observations of brown dwarfs, we also recommend a search of Io's extended atmosphere and the Io plasma torus for neutral and ionized Li, Cs, Rb, and F.Comment: 32 pages, 4 tables, 5 figures; accepted for publication by Icaru
    corecore