44 research outputs found

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    Get PDF
    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning adolescents and adults with autism spectrum disorder (ASD) and mental- and chronological-age matched typically-developing (TD) individuals using a perceptual simultaneity paradigm. Visual simultaneity thresholds were lower in individuals with ASD compared to TD individuals, suggesting that autism may be characterised by increased parsing of temporal event-structure, with a decreased capability for integration over time. Lower perceptual simultaneity thresholds in ASD were also related to increased developmental communication difficulties. These results are linked to detail-focussed and local processing bias

    Semantically-guided goal-sensitive reasoning: inference system and completeness

    No full text
    We present a new method for clausal theorem proving, named SGGS from semantically-guided goal-sensitive reasoning. SGGS generalizes to first-order logic the Conflict-Driven Clause Learning (CDCL) procedure for propositional satisfiability. Starting from an initial interpretation,used for semantic guidance, SGGS employs a sequence of constrained clauses to represent a candidate model, instance generation to extend it, resolution and other inferences to explain and solve conflicts, amending the model. We prove that SGGS is refutationally complete and model complete in the limit, regardless of initial interpretation. SGGS is also goal sensitive, if the initial interpretation is properly chosen, and proof confluent, because it repairs the current model without undoing steps by backtracking. Thus, SGGS is a complete first-order methodthat is simultaneously model-based `a la CDCL, semantically-guided, goal-sensitive, and proof confluent

    A Decomposition Rule for Decision Procedures by Resolution-Based Calculi.

    No full text
    Resolution-based calculi are among the most widely used calculi for theorem proving in first-order logic. Numerous refinements of resolution are nowadays available, such as e.g. basic superposition, a calculus highly optimized for theorem proving with equality. However, even such an advanced calculus does not restrict inferences enough to obtain decision procedures for complex logics, such as SHIQ. In this paper, we present a new decomposition inference rule, which can be combined with any resolution-based calculus compatible with the standard notion of redundancy. We combine decomposition with basic superposition to obtain three new decision procedures: (i) for the description logic SHIQ, (ii) for the description logic ACCHIQb, and (iii) for answering conjunctive queries over SHIQ knowledge bases. The first two procedures are worst-case optimal and, based on the vast experience in building efficient theorem provers, we expect them to be suitable for practical usage. © Springer-Verlag Berlin Heidelberg 2005

    A Resolution Decision Procedure for Fluted Logic

    No full text
    Fluted logic is a fragment of first-order logic without function symbols in which the arguments of atomic subformulae form ordered sequences. A consequence of this restriction is that, whereas first-order logic is only semi-decidable, fluted logic is decidable. In this paper we present a sound, complete and terminating inference procedure for fluted logic. Our characterisation of fluted logic is in terms of a new class of socalled fluted clauses. We show that this class is decidable by an ordering refinement of first-order resolution and a new form of dynamic renaming, called separation
    corecore