6 research outputs found

    Search for intracranial aneurysm susceptibility gene(s) using Finnish families

    Get PDF
    BACKGROUND: Cerebrovascular disease is the third leading cause of death in the United States, and about one-fourth of cerebrovascular deaths are attributed to ruptured intracranial aneurysms (IA). Epidemiological evidence suggests that IAs cluster in families, and are therefore probably genetic. Identification of individuals at risk for developing IAs by genetic tests will allow concentration of diagnostic imaging on high-risk individuals. We used model-free linkage analysis based on allele sharing with a two-stage design for a genome-wide scan to identify chromosomal regions that may harbor IA loci. METHODS: We previously estimated sibling relative risk in the Finnish population at between 9 and 16, and proceeded with a genome-wide scan for loci predisposing to IA. In 85 Finnish families with two or more affected members, 48 affected sibling pairs (ASPs) were available for our genetic study. Power calculations indicated that 48 ASPs were adequate to identify chromosomal regions likely to harbor predisposing genes and that a liberal stage I lod score threshold of 0.8 provided a reasonable balance between detection of false positive regions and failure to detect real loci with moderate effect. RESULTS: Seven chromosomal regions exceeded the stage I lod score threshold of 0.8 and five exceeded 1.0. The most significant region, on chromosome 19q, had a maximum multipoint lod score (MLS) of 2.6. CONCLUSIONS: Our study provides evidence for the locations of genes predisposing to IA. Further studies are necessary to elucidate the genes and their role in the pathophysiology of IA, and to design genetic tests

    Brood‐stock management and early hatchery rearing of Arctic charr (Salvelinus alpinus (Linnaeus))

    Get PDF
    Arctic charr (Salvelinus alpinus (Linnaeus)) is a stenothermic cold‐water fish, which has been cultured in Northern Europe and North America since the 1980s. The industry has remained relatively small with an annual production between 6000 and 10 000 tonnes, and is still challenged by an unreliable offspring production. This review focuses on offspring production in Arctic charr aquaculture including holding conditions for brood‐stock, fertilisation and egg rearing until hatch. Brood‐stock requires low temperatures during summer (<12°C) with the optimum still unknown. The temperature maximum for egg incubation lies between 6 and 8°C. The composition of an optimal brood‐stock diet is debated regarding fatty acids. A demand for a freshwater‐based diet rich in omega‐6 fatty acids is indicated, but results remain inconclusive. Extensive knowledge has been gained on the timing of spawning and its manipulation through photoperiod, temperature and hormone treatments; spawning can be induced by short‐day photoperiod; and temperature drops to 5°C. Eggs are fertilised dry in ovarian fluid. Egg quality is highly variable and positively related to egg size and energy density. Contrary, little information is available on sperm quality and its impact on egg survival. There may also be profound differences between Arctic charr of stationary or anadromous origin regarding requirements for holding conditions of brood‐stock and their diet. However, these differences have received little attention, and direct comparative studies are in demand

    Brood‐stock management and early hatchery rearing of Arctic charr ( Salvelinus alpinus

    No full text

    Aneurysm: Epidemiology Aetiology and Pathophysiology

    No full text

    Maturation in Atlantic salmon (Salmo salar, Salmonidae): a synthesis of ecological, genetic, and molecular processes

    No full text
    corecore