15 research outputs found

    Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq

    Get PDF
    To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3′ untranslated regions (3′ UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to elucidate the complex transcriptional landscape in two neuronal populations

    A computational evaluation of over-representation of regulatory motifs in the promoter regions of differentially expressed genes

    Get PDF
    BACKGROUND: Observed co-expression of a group of genes is frequently attributed to co-regulation by shared transcription factors. This assumption has led to the hypothesis that promoters of co-expressed genes should share common regulatory motifs, which forms the basis for numerous computational tools that search for these motifs. While frequently explored for yeast, the validity of the underlying hypothesis has not been assessed systematically in mammals. This demonstrates the need for a systematic and quantitative evaluation to what degree co-expressed genes share over-represented motifs for mammals. RESULTS: We identified 33 experiments for human and mouse in the ArrayExpress Database where transcription factors were manipulated and which exhibited a significant number of differentially expressed genes. We checked for over-representation of transcription factor binding sites in up- or down-regulated genes using the over-representation analysis tool oPOSSUM. In 25 out of 33 experiments, this procedure identified the binding matrices of the affected transcription factors. We also carried out de novo prediction of regulatory motifs shared by differentially expressed genes. Again, the detected motifs shared significant similarity with the matrices of the affected transcription factors. CONCLUSIONS: Our results support the claim that functional regulatory motifs are over-represented in sets of differentially expressed genes and that they can be detected with computational methods

    Ischemic stroke in the elderly: an overview of evidence.

    No full text
    Stroke mostly occurs in elderly people and patient outcomes after stroke are highly influenced by age. A better understanding of the causes of stroke in the elderly might have important practical implications not only for clinical management, but also for preventive strategies and future health-care policies. In this Review, we explore the evidence from both human and animal studies relating to the effect of old age-in terms of susceptibility, patient outcomes and response to treatment-on ischemic stroke. Several aging-related changes in the brain have been identified that are associated with an increase in vulnerability to ischemic stroke in the elderly. Furthermore, risk factor profiles for stroke and mechanisms of ischemic injury differ between young and elderly patients. Elderly patients with ischemic stroke often receive less-effective treatment and have poorer outcomes than younger individuals who develop this condition. Neuroprotective agents for ischemic stroke have been sought for decades but none has proved effective in humans. One contributing factor for this translational failure is that most preclinical studies have used young animals. Future research on ischemic stroke should consider age as a factor that influences stroke prevention and treatment, and should focus on the management of acute stroke in the elderly to reduce the incidence and improve outcomes in this vulnerable group

    The vascular depression hypothesis: mechanisms linking vascular disease with depression

    No full text

    Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities

    No full text
    corecore