514 research outputs found

    Formulation and solid state characterization of carboxylic acid-based co-crystals of tinidazole: An approach to enhance solubility.

    Full text link
    BACKGROUND: Tinidazole (TNZ) is an anti-parasite drug used in the treatment of a variety of amebic and parasitic infections. It has low solubility in aqueous media and is categorized under Class II of the Biopharmaceutical Classification System. OBJECTIVES: The aim of this research was to study the potential for enhancing the solubility of TNZ using carboxylic acid co-crystals. MATERIAL AND METHODS: The solubility of TNZ was determined individually using 6 carboxylic acids for forming co-crystals at a 1:1 stoichiometric ratio. Three carboxylic acids - namely tartaric acid (TA), oxalic acid (OA) and glutaric acid (GA) - resulted in the formation of co-crystals with enhanced solubility. An equilibrium solubility study of TNZ co-crystals at 1:1.5 and 1:2 stoichiometric ratios was also carried out. The co-crystals which developed were evaluated using X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) to study the drug-co-crystal former interactions. RESULTS: The solubility of TNZ in distilled water was found to be 0.014 mg/mL. The highest enhancement ratio was obtained with TNZ and TA at a ratio of 1:1. Differential scanning calorimetry thermograms suggested that the drug and carboxylic acids had undergone interactions such as hydrogen bonding. The XRD and DSC results confirmed the formation of co-crystals. CONCLUSIONS: It was concluded that the results of enhanced solubility of TNZ using co-crystals is a clear indication of the potential for co-crystals to be used in the future for other poorly water-soluble drugs, considering that co-crystals are a safe and cost-effective approach

    Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast.

    Full text link
    BACKGROUND: Solid dispersions are among the techniques successfully employed to enhance the dissolution of poorly water-soluble drugs. Microwave (MW)-assisted evaporative crystallization has been used to prepare solid dispersions of drugs and polymers. OBJECTIVES: The aim of the study was to investigate the solubility of apremilast (APM) in water by exploring the effect of MW-assisted solid dispersion technology. MATERIAL AND METHODS: In the present study, solid dispersions of APM, a poorly water-soluble drug, were prepared. The solid dispersions were prepared using the conventional method (CM) and the MW-based solvent evaporation technique. Microwave energy was used to enhance the solubility and dissolution rate of APM. The physical mixture and solid dispersions were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Apremilast tablets containing MW-assisted solid dispersions were prepared by the direct compression technique and compared with the marketed formulation (Aprezo tablets). RESULTS: The results obtained confirmed the conversion of crystalline APM to an amorphous form. The XRPD pattern of the MW-assisted formulation at a 2:1 ratio suggests the amorphous structure of APM within the formulation. Based on solubility studies results, Syloid® 244FP was selected as the best carrier. The dissolution study results suggested that the APM tablet prepared using MW-assisted solid dispersions at a 2:1 carrier/drug ratio improved the APM dissolution rate compared to the marketed formulation. CONCLUSIONS: Based on the results, it can be concluded that the MW-assisted solid dispersion technique may be an effective approach to enhancing the dissolution profile of other poorly water-soluble drugs

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on five research projects.United States Atomic Energy Commission (Contract AT(30-1) 1842

    Formulation and characterization of oral rapid disintegrating tablets of levocetirizine.

    Full text link
    BACKGROUND: Levocetirizine, active R (-) enantiomer of cetirizine, is an orally active and selective H1 receptor antagonist used medically as an anti-allergic. Allergic rhinitis is a symptomatic disorder of the nose induced by inflammation mediated by immunoglobulin E (IgE) in the membrane lining the nose after allergen exposure. OBJECTIVES: The purpose of the present study was to prepare rapidly disintegrating tablets of levocetirizine after its complexation with β-cyclodextrin (β-CD). MATERIAL AND METHODS: Levocetirizine-β-CD complex tablets were prepared by direct compression technique using 3 synthetic superdisintegrants in different proportions. Development of the formulation in the present study was mainly based on the concentration of superdisintegrants and the properties of the drug. Nine batches of tablets were formulated and evaluated for various parameters: drug content, weight variation, water absorption ratio, wetting time, in vitro disintegration, hardness, friability, thickness uniformity, and in vitro dissolution. RESULTS: A Fourier-transform infrared spectroscopy (FTIR) study showed that there were no significant interactions between the drug and the excipients. The prepared tablets were good in appearance and showed acceptable results for hardness and friability. The in vitro disintegrating time of the formulated tablet batches was found to be 15-35 s percentage and the drug content of tablets in all formulations was found to be between 90-102%, which complied with the limits established in the United States Pharmacopeia. CONCLUSIONS: Complexation of levocetirizine with β-CD significantly improves the solubility of the drug. The disintegration time of the tablets was decreased with an increase in superdisintegrant amount. The tablets (batch CPX5) had a minimum disintegration time of 20 s and 99.99% of the drug was released within 10 min

    Повышение эффективности взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры космических аппаратов на базе интеграции информационных систем

    Get PDF
    Предложен подход реализации информационного взаимодействия проектировщиков бортовой радиоэлектронной аппаратуры, повышающий эффективность использования ресурсов и управление производственными процессами. Представлена концепция практической реализации предложенного подхода в среде PLM-системы Enovia SmarTeam. Разработан алгоритм сохранения данных проектов EDA-системы Altium Designer в хранилище данных PLM-системы Enovia SmarTeam. Сформирован механизм генерации конструкторских документов на базе формата хранения данных JSON

    Microwave Gaseous Discharges

    Get PDF
    Contains research objectives and reports on five research projects

    Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis

    Get PDF
    Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a \u3e15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process

    Phosphorylated c-Src in the nucleus is associated with improved patient outcome in ER-positive breast cancer

    Get PDF
    Elevated c-Src protein expression has been shown in breast cancer and <i>in vitro</i> evidence suggests a role in endocrine resistance. To investigate whether c-Src is involved in endocrine resistance, we examined the expression of both total and activated c-Src in human breast cancer specimens from a cohort of oestrogen receptor (ER)-positive tamoxifen-treated breast cancer patients. Tissue microarray technology was employed to analyse 262 tumour specimens taken before tamoxifen treatment. Immunohistochemistry using total c-Src and activated c-Src antibodies was performed. Kaplan–Meier survival curves were constructed and log-rank test were performed. High level of nuclear activated Src was significantly associated with improved overall survival (<i>P</i>=0.047) and lower recurrence rates on tamoxifen (<i>P</i>=0.02). Improved patient outcome was only seen with activated Src in the nucleus. Nuclear activated Src expression was significantly associated with node-negative disease and a lower NPI (<i>P</i><0.05). On subgroup analysis, only ER-positive/progesterone receptor (PgR)-positive tumours were associated with improved survival (<i>P</i>=0.004). This shows that c-Src activity is increased in breast cancer and that activated Src within the nucleus of ER-positive tumours predicts an improved outcome. In ER/PgR-positive disease, activated Src kinase does not appear to be involved in <i>de novo</i> endocrine resistance. Further study is required in ER-negative breast cancer as this may represent a cohort in which it is associated with poor outcome

    Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli

    Get PDF
    The set of regulatory interactions between genes, mediated by transcription factors, forms a species' transcriptional regulatory network (TRN). By comparing this network with measured gene expression data one can identify functional properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in response to environmental changes and genotypic mutation. Subnets with less changes in their expression pattern have a higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the TRN consists of several scales of regulatory organization: 1) subnets with more varying gene expression controlled by both transcription factors and post-transcriptional RNA regulation, and 2) subnets with less varying gene expression having more feed-forward loops and less post-transcriptional RNA regulation.Comment: 14 pages, 8 figures, to be published in PLoS Computational Biolog
    corecore