852 research outputs found
EXCESS PROFITS TAXATION IN 1941
The problems of business taxation are twofold: from the governmental standpoint, the problem is to obtain sufficient revenues at a minimum of cost and with the least resistance; from the business standpoint, the problem is to obtain lighter taxation where possible at a minimum of cost and with the greatest simplicity and uniformity. The excess profits tax has been devised by the economists of the several nations with the object of bolstering national taxing systems in extraordinary periods which demand abnormal revenues. With the advent of the excess profits tax, the desire for simplicity and low cost in taxation was smothered under the relatively complex provisions and administrative difficulties which accompany such a tax
Computer Components and Systems
Contains reports on two research projects.U. S. Navy Bureau of Ships under Contract NObsr 7760
Identification and Field Evaluation of Grape Shoot Volatiles Attractive to Female Grape Berry Moth ( Paralobesia viteana )
Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from shoots of riverbank grape (Vitis riparia) that attract the female grape berry moth (GBM, Paralobesia viteana). Consistent EAD activity was obtained for 11 chemicals: (Z)-3-hexen-1-yl acetate, (E)-linalool oxide, (Z)-linalool oxide, nonanal, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, β-caryophyllene, germacrene-D, and α-farnesene. In flight-tunnel tests that involved female GBM and rubber septa loaded with subsets of these 11 compounds, we found that both the 11-component blend and a seven-component blend, composed of (E)-linalool oxide, (Z)-linalool oxide, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, decanal, β-caryophyllene and germacrene-D, elicited equivalent levels of upwind flight as freshly cut grape shoots. The removal of any of the seven compounds from the seven-component blend resulted in a significant decrease in female upwind flight responses. In a field trial with these two synthetic blends, traps equipped with either blend captured more female GBM compared to traps baited with hexane only (control), although the number of females caught was generally low. There were no differences in the number of males captured among treatments. Although in flight-tunnel trials, moths readily flew upwind to both grape shoots and rubber septa loaded with the best lures, they landed on shoots but not on rubber septa. Coupled with relatively low field catches, this suggests that additional host finding cues need to be identified to improve trap efficac
Flight Tunnel Responses of Female Grape Berry Moth ( Paralobesia viteana ) to Host Plants
Semiochemicals play important roles in mate and host recognition of herbivorous insects, such as moths, and flight tunnels have been an effective tool in the identification of these bioactive compounds. However, more work has been carried out on pheromones than on host plant cues, and few examples exist where flight tunnel evaluations of host cues have resulted in a lure that is attractive under field conditions. Our goal was to determine whether the flight tunnel could be used to evaluate the response of a specialist moth, grape berry moth (GBM), to its host plant (grapevines), by incorporating ecological and physiological aspects of GBM biology. We found grape shoot tips and mature leaves were more attractive to female GBM than unripe and ripe berries or flowers. Under optimized flight tunnel conditions, approximately 80% of tested females flew upwind and closely approached or landed on the most preferred target. Mating status, wind speed, the time of day, and the presence/absence of patterns that resemble grape tissues on the top of the flight tunnel all significantly affected the responses of female GBM. Consideration of these factors in flight tunnel assays will aid in the development of a synthetic lure that can be used to monitor female moths in the fiel
A Size of ~10 Mpc for the Ionized Bubbles at the End of Cosmic Reionization
The first galaxies to appear in the universe at redshifts z>20 created
ionized bubbles in the intergalactic medium of neutral hydrogen left over from
the Big-Bang. It is thought that the ionized bubbles grew with time, surrounded
clusters of dwarf galaxies and eventually overlapped quickly throughout the
universe over a narrow redshift interval near z~6. This event signaled the end
of the reionization epoch when the universe was a billion years old. Measuring
the hitherto unknown size distribution of the bubbles at their final overlap
phase is a focus of forthcoming observational programs aimed at highly
redshifted 21cm emission from atomic hydrogen. Here we show that the combined
constraints of cosmic variance and causality imply an observed bubble size at
the end of the overlap epoch of ~10 physical Mpc, and a scatter in the observed
redshift of overlap along different lines-of-sight of ~0.15. This scatter is
consistent with observational constraints from recent spectroscopic data on the
farthest known quasars. Our novel result implies that future radio experiments
should be tuned to a characteristic angular scale of ~0.5 degrees and have a
minimum frequency band-width of ~8 MHz for an optimal detection of 21cm flux
fluctuations near the end of reionization.Comment: Accepted for publication in Nature. Press embargo until publishe
Recommended from our members
Inference of Marine Stratus Cloud Optical Depths from Satellite Measurements: Does 1D Theory Apply?
The validity of plane-parallel (1D) radiative transfer theory for cloudy atmospheres is examined by directly comparing calculated and observed visible reflectances for one month of Global Area Coverage Advanced Very High Resolution Radiometer satellite observations of marine stratus cloud layers off the coasts of California, Peru, and Angola. Marine stratus are an excellent testbed, as they arguably are the closest to plane-parallel found in nature. Optical depths in a 1D radiative transfer model are adjusted so that 1D model reflectances match those observed at nadir on a pixel-by-pixel basis. The 1D cloud optical depth distributions are then used in the plane-parallel model to generate reflectance distributions for different sun–earth–satellite viewing geometries. These reflectance distributions are directly compared with the observations. Separate analyses are performed for overcast and broken cloud layers as identified by the spatial coherence method.
When 1D reflectances are directly compared with observations at different view angles, relative differences are generally small (≤10%) in the backscattering direction for solar zenith angles ≤60° and show no systematic view angle dependence. In contrast, 1D reflectances increase much more rapidly with view angle than the observed reflectances in the forward-scattering direction. Relative differences in the forward-scattering direction are ≈2–3 times larger than in the backscattering direction. At solar zenith angles ≥60°, the 1D model underestimates observed reflectances at nadir by 20%–30% and overestimates reflectances at the most oblique view angles in the forward scattering direction by 15%–20%. Consequently, when inferred on a pixel-by-pixel basis, nadir-derived cloud optical depths show a systematic increase with solar zenith angle, both for overcast and broken cloud layers, and cloud optical depths decrease with view angle in the forward scattering direction. Interestingly, in the case of broken marine stratocumulus, the common practice of assuming that pixels are overcast when they are not mitigates this bias to some extent, thereby confounding its detection. But even for broken clouds, the bias remains.
Because of the nonlinear dependence of cloud albedo on cloud optical depth, errors in cloud optical depth lead to large errors in cloud albedo—and therefore energy budget calculations—regardless of whether cloud layers are overcast or broken. These findings suggest that as a minimum requirement, direct application of the plane-parallel model approximation should be restricted to moderate–high sun elevations and to view angles in the backscattering direction. Based on Monte Carlo simulations, the likely reason for the discrepancies between observed radiances and radiances calculated on the basis of 1D theory is because real clouds have inhomogeneous (i.e., bumpy) top
Computer Components and Systems
Contains reports on three research projects.United States Navy, Bureau of Ships (Contract NObsr 77603
A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds
In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering
Gamma-Ray Background from Structure Formation in the Intergalactic Medium
The universe is filled with a diffuse and isotropic extragalactic background
of gamma-ray radiation, containing roughly equal energy flux per decade in
photon energy between 3 MeV-100 GeV. The origin of this background is one of
the unsolved puzzles in cosmology. Less than a quarter of the gamma-ray flux
can be attributed to unresolved discrete sources, but the remainder appears to
constitute a truly diffuse background whose origin has hitherto been
mysterious. Here we show that the shock waves induced by gravity during the
formation of large-scale structure in the intergalactic medium, produce a
population of highly-relativistic electrons with a maximum Lorentz factor above
10^7. These electrons scatter a small fraction of the microwave background
photons in the present-day universe up to gamma-ray energies, thereby providing
the gamma-ray background. The predicted diffuse flux agrees with the observed
background over more than four decades in photon energy, and implies a mean
cosmological density of baryons which is consistent with Big-Bang
nucleosynthesis.Comment: 7 pages, 1 figure. Accepted for publication in Nature. (Press embargo
until published.
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
- …