254 research outputs found

    Myocardial blood flow in man: effects of coronary collateral circulation and coronary artery bypass surgery

    Get PDF
    A B S T R A C T The effects of coronary artery bypass graft (CAB) and coronary collaterals (CC) even with CAB occluded. Vessels with greater than 80% stenosis or total occlusion by angiography had significant pressure gradients with marked reduction of postobstructive MBF. No significant difference in postobstructive MBF was found when vessels with CC (21±4 ml/min per 100 g) were compared to those without CC (17+4 ml/min per 100 g) (P > 0.4). These studies demonstrate that (a) mean MBF increased 268% after CAB, (b) heterogeneous MBF persisted after CAB, (c) CC were not associated with significant increases in MUBF, and (d) vessels with less than 80% stenosis had less than 20 mm Hg gradient with minimal effect on resting MBF

    Leopard syndrome

    Get PDF
    LEOPARD syndrome (LS, OMIM 151100) is a rare multiple congenital anomalies condition, mainly characterized by skin, facial and cardiac anomalies. LEOPARD is an acronym for the major features of this disorder, including multiple Lentigines, ECG conduction abnormalities, Ocular hypertelorism, Pulmonic stenosis, Abnormal genitalia, Retardation of growth, and sensorineural Deafness. About 200 patients have been reported worldwide but the real incidence of LS has not been assessed. Facial dysmorphism includes ocular hypertelorism, palpebral ptosis and low-set ears. Stature is usually below the 25th centile. Cardiac defects, in particular hypertrophic cardiomyopathy mostly involving the left ventricle, and ECG anomalies are common. The lentigines may be congenital, although more frequently manifest by the age of 4–5 years and increase throughout puberty. Additional common features are café-au-lait spots (CLS), chest anomalies, cryptorchidism, delayed puberty, hypotonia, mild developmental delay, sensorineural deafness and learning difficulties. In about 85% of the cases, a heterozygous missense mutation is detected in exons 7, 12 or 13 of the PTPN11 gene. Recently, missense mutations in the RAF1 gene have been found in two out of six PTPN11-negative LS patients. Mutation analysis can be carried out on blood, chorionic villi and amniotic fluid samples. LS is largely overlapping Noonan syndrome and, during childhood, Neurofibromatosis type 1-Noonan syndrome. Diagnostic clues of LS are multiple lentigines and CLS, hypertrophic cardiomyopathy and deafness. Mutation-based differential diagnosis in patients with borderline clinical manifestations is warranted. LS is an autosomal dominant condition, with full penetrance and variable expressivity. If one parent is affected, a 50% recurrence risk is appropriate. LS should be suspected in foetuses with severe cardiac hypertrophy and prenatal DNA test may be performed. Clinical management should address growth and motor development and congenital anomalies, in particular cardiac defects that should be monitored annually. Hypertrophic cardiomyopathy needs careful risk assessment and prophylaxis against sudden death in patients at risk. Hearing should be evaluated annually until adulthood. With the only exception of ventricular hypertrophy, adults with LS do not require special medical care and long-term prognosis is favourable

    Extending the spectrum of Ellis van Creveld syndrome: a large family with a mild mutation in the EVC gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ellis-van Creveld (EvC) syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails and teeth and is inherited in an autosomal recessive pattern. We report a family with complex septal cardiac defects, rhizomelic limb shortening, and polydactyly, without the typical lip, dental, and nail abnormalities of EvC. The phenotype was inherited in an autosomal recessive pattern, with one instance of pseudodominant inheritance.</p> <p>Methods</p> <p>Because of the phenotypic overlap with EvC, microsatellite markers were used to test for linkage to the <it>EVC/EVC2 </it>locus. The results did not exclude linkage, so samples were sequenced for mutations.</p> <p>Results</p> <p>We identified a c.1868T>C mutation in <it>EVC</it>, which predicts p.L623P, and was homozygous in affected individuals.</p> <p>Conclusion</p> <p>We conclude that this <it>EVC </it>mutation is hypomorphic and that such mutations can cause a phenotype of cardiac and limb defects that is less severe than typical EvC. <it>EVC </it>mutation analysis should be considered in patients with cardiac and limb malformations, even if they do not manifest typical EvC syndrome.</p

    Extending the spectrum of Ellis van Creveld syndrome: a large family with a mild mutation in the EVC gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ellis-van Creveld (EvC) syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails and teeth and is inherited in an autosomal recessive pattern. We report a family with complex septal cardiac defects, rhizomelic limb shortening, and polydactyly, without the typical lip, dental, and nail abnormalities of EvC. The phenotype was inherited in an autosomal recessive pattern, with one instance of pseudodominant inheritance.</p> <p>Methods</p> <p>Because of the phenotypic overlap with EvC, microsatellite markers were used to test for linkage to the <it>EVC/EVC2 </it>locus. The results did not exclude linkage, so samples were sequenced for mutations.</p> <p>Results</p> <p>We identified a c.1868T>C mutation in <it>EVC</it>, which predicts p.L623P, and was homozygous in affected individuals.</p> <p>Conclusion</p> <p>We conclude that this <it>EVC </it>mutation is hypomorphic and that such mutations can cause a phenotype of cardiac and limb defects that is less severe than typical EvC. <it>EVC </it>mutation analysis should be considered in patients with cardiac and limb malformations, even if they do not manifest typical EvC syndrome.</p

    Otodental syndrome

    Get PDF
    The otodental syndrome also named otodental dysplasia, is characterised by a striking dental phenotype known as globodontia, associated with sensorineural high frequency hearing loss and eye coloboma. Globodontia occurs in both primary and permanent dentition, affecting canine and molar teeth (i.e. enlarged bulbous malformed posterior teeth with almost no discernable cusps or grooves). The condition appears to be inherited in an autosomal dominant mode, although sporadic cases have been reported. It is a rare disease, a few families have been described in the literature. In the British family, the locus for oculo-oto-dental syndrome was mapped to 20q13.1 within a 12-cM critical chromosomal region. Dental management is complex, interdisciplinary and will include regular follow up, scheduled teeth extraction and orthodontic treatment. Hearing checks and, if necessary, hearing aids are mandatory, as well as eye examination and ad hoc treatment if necessary

    A comparison of echocardiographic and electron beam computed tomographic assessment of aortic valve area in patients with valvular aortic stenosis

    Get PDF
    The purpose of this study was to compare electron beam computed tomography (EBT) with transthoracic echocardiography (TTE) in determining aortic valve area (AVA). Thirty patients (9 females, 21 males) underwent a contrast-enhanced EBT scan (e-Speed, GE, San Francisco, CA, USA) and TTE within 17 ± 12 days. In end-inspiratory breath hold, a prospectively ecg-triggered scan was acquired with a beam speed of 50–100 ms, a collimation of 2 × 1.5 mm and an increment of 3.0 mm. The AVA was measured with planimetry. A complete TTE study was performed in all patients, and the AVA was computed using the continuity equation. There was close correlation between AVA measured with EBT and AVA assessed with TTE (r = 0.60, P < 0.01). The AVA measured with EBT was 0.51 ± 0.46 cm2 larger than the AVA calculated with TTE measurements. EBT appeared to be a valuable non-invasive method to measure the AVA. EBT measures the anatomical AVA, while with TTE the functional AVA is calculated, which explains the difference in results between the methods

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms
    corecore