4 research outputs found

    A Cytochrome b561 with Ferric Reductase Activity from the Parasitic Blood Fluke, Schistosoma japonicum

    Get PDF
    Parasites acquire their food from their hosts, either by feeding directly on tissues of the host, or by competing for ingested food. Adult schistosomes live within the vasculature of humans and rely on the blood cells and plasma they ingest and dissolved solutes they derive across their body surface, the tegument, for their nutrition. Schistosomes require host trace elements, notably iron, which is used as a co-factor in many biological reactions. Iron is especially important for schistosomes, for it has a significant role in egg formation and embryogenesis. In human tissues, iron predominates in the trivalent (ferric) form; however, it is the divalent (ferrous) form that is used as an essential co-factor for multiple biomolecules and enzymes. In order to be acquired from the host environment, the valency of iron must be modified to render it suitable for transport across the parasite membrane. This paper describes the molecular characterisation of a schistosome molecule that is crucial for bringing about this change in iron. Schistosoma japonicum Cytb561 is the first ferric reductase characterised in any parasitic helminth and emphasises the importance of iron, and other divalent cations, in these organisms

    Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Get PDF
    BackgroundWe previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information.Methodology/Principal FindingsHere, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10?6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition.ConclusionsThe results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted

    Bile Salts, Bile Flow, and Cholestasis

    No full text

    Astrometry and Cosmology

    No full text
    corecore