412 research outputs found

    Natural history and outcome in systemic AA amyloidosis

    Get PDF
    BACKGROUND:Deposition of amyloid fibrils derived from circulating acute-phase reactant serum amyloid A protein (SAA) causes systemic AA amyloidosis, a serious complication of many chronic inflammatory disorders. Little is known about the natural history of AA amyloidosis or its response to treatment.METHODS:We evaluated clinical features, organ function, and survival among 374 patients with AA amyloidosis who were followed for a median of 86 months. The SAA concentration was measured serially, and the amyloid burden was estimated with the use of whole-body serum amyloid P component scintigraphy. Therapy for inflammatory diseases was administered to suppress the production of SAA.RESULTS:Median survival after diagnosis was 133 months; renal dysfunction was the predominant disease manifestation. Mortality, amyloid burden, and renal prognosis all significantly correlated with the SAA concentration during follow-up. The risk of death was 17.7 times as high among patients with SAA concentrations in the highest eighth, or octile, (greater/equal 155 mg per liter) as among those with concentrations in the lowest octile (< 4 mg per liter); and the risk of death was four times as high in the next-to-lowest octile (4 to 9 mg per liter). The median SAA concentration during follow-up was 6 mg per liter in patients in whom renal function improved and 28 mg per liter in those in whom it deteriorated (P < 0.001). Amyloid deposits regressed in 60% of patients who had a median SAA concentration of less than 10 mg per liter, and survival among these patients was superior to survival among those in whom amyloid deposits did not regress (P=0.04).CONCLUSIONS:The effects of renal dysfunction dominate the course of AA amyloidosis, which is associated with a relatively favorable outcome in patients with SAA concentrations that remain in the low-normal range (< 4 mg per liter)

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Sex-specific disruption of murine midbrain astrocytic and dopaminergic developmental trajectories following antenatal GC treatment

    Get PDF
    The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bia
    corecore