16 research outputs found
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Bose-Einstein condensation in a one-dimensional interacting system due to power-law trapping potentials
We examine the possibility of Bose-Einstein condensation in one-dimensional
interacting Bose gas subjected to confining potentials of the form , in which , by solving the
Gross-Pitaevskii equation within the semi-classical two-fluid model. The
condensate fraction, chemical potential, ground state energy, and specific heat
of the system are calculated for various values of interaction strengths. Our
results show that a significant fraction of the particles is in the lowest
energy state for finite number of particles at low temperature indicating a
phase transition for weakly interacting systems.Comment: LaTeX, 6 pages, 8 figures, uses grafik.sty (included), to be
published in Phys. Rev.
Dynamical response of a Bose-Einstein condensate to a discontinuous change in internal state
A two-photon transition is used to convert an arbitrary fraction of the 87Rb
atoms in a |F=1,m_f=-1> condensate to the |F=2,m_f=1> state. Transferring the
entire population imposes a discontinuous change on the condensate's mean-field
repulsion, which leaves a residual ringing in the condensate width. A
calculation based on Gross-Pitaevskii theory agrees well with the observed
behavior, and from the comparison we obtain the ratio of the intraspecies
scattering lengths for the two states, a_|1,-1> / a_|2,1> = 1.062(12).Comment: 4 pages, 3 figure
Band transport across a chain of dopant sites in silicon over micron distances and high temperatures
Bose–Einstein condensation of exciton polaritons
Phase transitions to quantum condensed phases - such as Bose - Einstein condensation (BEC), superfluidity, and superconductivity - have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to the creation of exciton polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence, and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a macroscopic quantum phase.</p
