132 research outputs found

    Perpetuities: The New Empire

    Get PDF

    Spatial and temporal variations in precipitation and cloud interception in the Sierra Nevada of central California

    Get PDF
    Spatial and temporal variations in patterns of precipitation and cloud interception were studied for a period of 14 months in the Sierra Nevada of central California. 14 fully automated sampling stations, located at elevations from 800 to 2400 m, were utilized in the study. Both precipitation and cloud interception were observed to increase with elevation. Cloudwater deposition increased at higher elevations due both to a greater frequency of cloud interception and higher wind speeds. Cloudwater deposition, caused primarily by the interception of clouds associated with cold fronts approaching from the north or north-west, is most important at elevations above 1500 m; however, the interception of highly polluted winter “Tule” fogs, lifting above the floor of the San Joaquin Valley, appears to be an important mechanism for cloudwater deposition at lower elevation sites. Observed and estimated hydrological and chemical inputs to the passive cloudwater collectors used in the study were substantial, suggesting that cloud interception may contribute significantly to the same inputs for exposed conifers in the region

    Cloud water chemistry in Sequoia National Park

    Get PDF
    Interception of cloudwater by forests in the Sierra Nevada Mountains may contribute significantly to acidic deposition in the region. Cloudwater sampled in Sequoia National Park had pH values ranging from 4.4 to 5.7. The advance of cold fronts into the Park appears to lead to higher aerosol and gas phase concentrations than are seen under normal mountain-valley circulations, producing higher cloud-water concentrations than might otherwise be expected. Estimates of annual deposition rates of NO_3^−, SO_4^(2−), NH_4^+ and H^+ due to cloudwater impaction are comparable to those measured in precipitation

    Automated rainwater collector

    Get PDF
    An automated rain water collector is disclosed to collect a plurality of successive rain water samples, comprised of a reservoir into which rain water is collected and discharged, and a motor-driven turntable which holds a plurality of sample bottles. When the reservoir is filled to a predetermined volume, means, such as a liquid level sensor, actuates a valve to open same and discharge the liquid sample from the reservoir into one of the bottles at a filling station on the turntable. The valve then closes and the turntable rotates to index the next bottle beneath the reservoir at the filling station, and the operation is repeated to fill the latter bottle. When all of the bottles on the turntable have been filled, the indexing means is deactivated and liquid accumulating in the reservoir is diverted to an overflow bottle

    Active cloudwater collector

    Get PDF
    A cloud water collector is disclosed comprised of a sampler duct having a plurality of spaced Teflon strands, in the form of screens, mounted across the conduit at an acute angle facing the open inlet of the conduit. Droplets in a cloud sample are drawn into the conduit by a fan located at the back end of the conduit, impact upon the Teflon strands and are drawn down to the lower ends of the strands, where they drop and the accumulated droplets are diverted to a sample bottle for collection. The cloud water collector can be automated to collect a plurality of successive cloud water samples by an automated sampler containing a reservoir into which cloud water obtained in the cloud water collector is discharged. A motor-driven turntable is provided which holds a plurality of sample bottles. When the reservoir is filled to a predetermined volume, apparatus, such as a liquid level sensor, actuates a valve to open same and discharge the liquid sample from the reservoir into one of the bottles at a filling station on the turntable. The valve then closes and the turntable rotates to index the next bottle beneath the reservoir at the filling station, and the operation is repeated to fill the latter bottle. When all of the bottles on the turntable have been filled, the indexing mechanism is deactivated and liquid accumulating in the reservoir is diverted to an overflow bottle

    Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    Get PDF
    Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH 4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7×1010g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3×10 10g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory. © 2012. American Geophysical Union. All Rights Reserved

    Vertical Transport Rates in the Stratosphere in 1993 from Observations of CO2, N2O and CH4

    Get PDF
    Measurements of CO2, N2O and CH4 are analyzed to define hemispheric average vertical exchange rates in the lower stratosphere from November 1992 to October 1993. Effective vertical diffusion coefficients were small in summer, less than or equal to 1 m(exp 2)/sec at altitudes below 25 km; values were similar near the tropopause in winter, but increased markedly with altitude. The analysis suggests possibly longer residence times for exhaust from stratospheric aircraft, and more efficient transport from 20 km to the middle stratosphere, than predicted by many current models. Seasonally-resolved measurements of stratospheric CO2 and N2O provide significant new constraints on rates for global-scale vertical transport

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018
    corecore