127 research outputs found

    Therapy and Long-Term Prophylaxis of Vaccinia Virus Respiratory Infections in Mice with an Adenovirus-Vectored Interferon Alpha (mDEF201)

    Get PDF
    An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201) was evaluated for efficacy against lethal vaccinia virus (WR strain) respiratory infections in mice. mDEF201 was administered as a single intranasal treatment either prophylactically or therapeutically at doses of 106 to 108 plaque forming units/mouse. When the prophylactic treatment was given at 56 days prior to infection, it protected 90% of animals from death (100% protection for treatments given between 1–49 days pre-infection), with minimal weight loss occurring during infection. Surviving animals re-challenged with virus 22 days after the primary infection were protected from death, indicating that mDEF201 did not compromise the immune response against the initial infection. Post-exposure therapy was given between 6–24 h after vaccinia virus exposure and protection was afforded by a 108 dose of mDEF201 given at 24 h, whereas a 107 dose was effective up to 12 h. Comparisons were made of the ability of mDEF201, given either 28 or 1 day prior to infection, to inhibit tissue virus titers and lung infection parameters. Lung, liver, and spleen virus titers were inhibited to nearly the same extent by either treatment, as were lung weights and lung hemorrhage scores (indicators of pneumonitis). Lung virus titers were significantly (>100-fold) lower than in the placebo group, and the other infection parameters in mDEF201 treated mice were nearly at baseline. In contrast, viral titers and lung infection parameters were high in the placebo group on day 5 of the infection. These results demonstrate the long-acting prophylactic and treatment capacity of mDEF201 to combat vaccinia virus infections

    CD103 Deficiency Prevents Graft-versus-Host Disease but Spares Graft-versus-Tumor Effects Mediated by Alloreactive CD8 T Cells

    Get PDF
    Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT).We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity.These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis

    Use of Recombinant Adenovirus Vectored Consensus IFN-α to Avert Severe Arenavirus Infection

    Get PDF
    Several arenaviruses can cause viral hemorrhagic fever, a severe disease with case-fatality rates in hospitalized individuals ranging from 15-30%. Because of limited prophylaxis and treatment options, new medical countermeasures are needed for these viruses classified by the National Institutes of Allergy and Infectious Diseases (NIAID) as top priority biodefense Category A pathogens. Recombinant consensus interferon alpha (cIFN-α) is a licensed protein with broad clinical appeal. However, while cIFN-α has great therapeutic value, its utility for biodefense applications is hindered by its short in vivo half-life, mode and frequency of administration, and costly production. To address these limitations, we describe the use of DEF201, a replication-deficient adenovirus vector that drives the expression of cIFN-α, for pre- and post-exposure prophylaxis of acute arenaviral infection modeled in hamsters. Intranasal administration of DEF201 24 h prior to challenge with Pichindé virus (PICV) was highly effective at protecting animals from mortality and preventing viral replication and liver-associated disease. A significant protective effect was still observed with a single dosing of DEF201 given two weeks prior to PICV challenge. DEF201 was also efficacious when administered as a treatment 24 to 48 h post-virus exposure. The protective effect of DEF201 was largely attributed to the expression of cIFN-α, as dosing with a control empty vector adenovirus did not protect hamsters from lethal PICV challenge. Effective countermeasures that are highly stable, easily administered, and elicit long lasting protective immunity are much needed for arena and other viral infections. The DEF201 technology has the potential to address all of these issues and may serve as a broad-spectrum antiviral to enhance host defense against a number of viral pathogens

    KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei

    Get PDF
    Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery.We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level.The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod

    Evolution of Wenger's concept of community of practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the experience of health professionals, it appears that interacting with peers in the workplace fosters learning and information sharing. Informal groups and networks present good opportunities for information exchange. Communities of practice (CoPs), which have been described by Wenger and others as a type of informal learning organization, have received increasing attention in the health care sector; however, the lack of uniform operating definitions of CoPs has resulted in considerable variation in the structure and function of these groups, making it difficult to evaluate their effectiveness.</p> <p>Objective</p> <p>To critique the evolution of the CoP concept as based on the germinal work by Wenger and colleagues published between 1991 and 2002.</p> <p>Discussion</p> <p>CoP was originally developed to provide a template for examining the learning that happens among practitioners in a social environment, but over the years there have been important divergences in the focus of the concept. Lave and Wenger's earliest publication (1991) centred on the interactions between novices and experts, and the process by which newcomers create a professional identity. In the 1998 book, the focus had shifted to personal growth and the trajectory of individuals' participation within a group (i.e., peripheral versus core participation). The focus then changed again in 2002 when CoP was applied as a managerial tool for improving an organization's competitiveness.</p> <p>Summary</p> <p>The different interpretations of CoP make it challenging to apply the concept or to take full advantage of the benefits that CoP groups may offer. The tension between satisfying individuals' needs for personal growth and empowerment versus an organization's bottom line is perhaps the most contentious of the issues that make CoPs difficult to cultivate. Since CoP is still an evolving concept, we recommend focusing on optimizing specific characteristics of the concept, such as support for members interacting with each other, sharing knowledge, and building a sense of belonging within networks/teams/groups. Interventions that facilitate relationship building among members and that promote knowledge exchange may be useful for optimizing the function of these groups.</p

    The Role of Turtles as Coral Reef Macroherbivores

    Get PDF
    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood

    Use of communities of practice in business and health care sectors: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since being identified as a concept for understanding knowledge sharing, management, and creation, communities of practice (CoPs) have become increasingly popular within the health sector. The CoP concept has been used in the business sector for over 20 years, but the use of CoPs in the health sector has been limited in comparison.</p> <p>Objectives</p> <p>First, we examined how CoPs were defined and used in these two sectors. Second, we evaluated the evidence of effectiveness on the health sector CoPs for improving the uptake of best practices and mentoring new practitioners.</p> <p>Methods</p> <p>We conducted a search of electronic databases in the business, health, and education sectors, and a hand search of key journals for primary studies on CoP groups. Our research synthesis for the first objective focused on three areas: the authors' interpretations of the CoP concept, the key characteristics of CoP groups, and the common elements of CoP groups. To examine the evidence on the effectiveness of CoPs in the health sector, we identified articles that evaluated CoPs for improving health professional performance, health care organizational performance, professional mentoring, and/or patient outcome; and used experimental, quasi-experimental, or observational designs.</p> <p>Results</p> <p>The structure of CoP groups varied greatly, ranging from voluntary informal networks to work-supported formal education sessions, and from apprentice training to multidisciplinary, multi-site project teams. Four characteristics were identified from CoP groups: social interaction among members, knowledge sharing, knowledge creation, and identity building; however, these were not consistently present in all CoPs. There was also a lack of clarity in the responsibilities of CoP facilitators and how power dynamics should be handled within a CoP group. We did not find any paper in the health sector that met the eligibility criteria for the quantitative analysis, and so the effectiveness of CoP in this sector remained unclear.</p> <p>Conclusion</p> <p>There is no dominant trend in how the CoP concept is operationalized in the business and health sectors; hence, it is challenging to define the parameters of CoP groups. This may be one of the reasons for the lack of studies on the effectiveness of CoPs in the health sector. In order to improve the usefulness of the CoP concept in the development of groups and teams, further research will be needed to clarify the extent to which the four characteristics of CoPs are present in the mature and emergent groups, the expectations of facilitators and other participants, and the power relationship within CoPs.</p

    A Genomewide Screen for Suppressors of Alu-Mediated Rearrangements Reveals a Role for PIF1

    Get PDF
    Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition
    • …
    corecore