217 research outputs found

    Lacticacidaemia due to pyruvate dehydrogenase deficiency, with evidence of protein polymorphism in the α-subunit of the enzyme

    Full text link
    In three infants with neonatal lacticacidaemia, a deficiency in the E 1 (pyruvate dehydrogenase) component of the pyruvate dehydrogenase complex was demonstrated in skin fibroblast cultures. Residual activites of the pyruvate dehydrogenase complex in the activated state were 1.6%, 3.9% and 18.8% of control values, respectively. Immunoprecipitation of extracts of cultures skin fibroblasts grown on 35 S-methionine with anti-pyruvate dehydrogenase complex antibody revealed an abnormality in the E 1 α-component of these three patients when visualised after sodium dodecyl sulphate/polyacrylamide gel electrophoresis. This component appeared to have a slightly lower molecular weight than did this protein from control cell strains. Cell strains from other patients with a deficiency of the pyruvate dehydrogenase complex did not exhibit this defect. Three patients also showed dysmorphism and developmental abnormalities of the central nervous system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47532/1/431_2004_Article_BF00441736.pd

    Functional status of masticatory system, excutive function and episodic memory in older persons.

    Get PDF
    Findings from human experimental studies suggest that mastication positively influences cognitive function. The participants in those studies were relatively young. The goal of this study was to examine the relationship between the functional status of the masticatory system, episodic memory, and executive functions in elderly people. The participants, elderly people living independently at home, were divided into two groups. One group had a full complement of natural teeth (n = 19) and the other group had full dentures (n = 19). The functional status of the masticatory system was assessed by measuring mandibular excursions (i.e. the distances over which the mandible can move in the open, lateral, and forward directions), bite force, number of occluding pairs and complaints of the masticatory system (facial pain, headaches/migraine). Executive functions and episodic memory were assessed by neuropsychological tests. Backward regression analysis showed that only in the group of elderly people with full dentures, 22% of executive functions were predicted by complaints of the masticatory system and 19.4% of episodic memory was predicted by masticatory performance (composed of mandibular excursions and bite force). The conclusion of this study is that only in older persons with full dentures the relationship between mastication, episodic memory, and executive function becomes evident when the functional status of the masticatory system decreases

    Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Get PDF
    BACKGROUND: Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. RESULTS: In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E(2 )pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. CONCLUSION: Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms

    Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects

    Get PDF
    Background: High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects. Methods: This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated. Results: The AUC010hrAUC_{0-10 hr} and CmaxC_{max} values increased nonlinearly between 100 mg and 1500 mg. The slope of the AUC010hrAUC_{0-10 hr} vs dose, as well as the CmaxC_{max} vs dose, plots are steepest at the lowest thiamine doses. Conclusion: Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process

    Alzheimer’s disease: diagnostics, prognostics and the road to prevention

    Get PDF
    Alzheimer’s disease (AD) presents one of the leading healthcare challenges of the 21st century, with a projected worldwide prevalence of >107 million cases by 2025. While biomarkers have been identified, which may correlate with disease progression or subtype for the purpose of disease monitoring or differential diagnosis, a biomarker for reliable prediction of late onset disease risk has not been available until now. This deficiency in reliable predictive biomarkers, coupled with the devastating nature of the disease, places AD at a high priority for focus by predictive, preventive and personalized medicine. Recent data, discovered using phylogenetic analysis, suggest that a variable length poly-T sequence polymorphism in the TOMM40 gene, adjacent to the APOE gene, is predictive of risk of AD age-of-onset when coupled with a subject’s current age. This finding offers hope for reliable assignment of disease risk within a 5-7 year window, and is expected to guide enrichment of clinical trials in order to speed development of preventative medicines

    Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model

    Get PDF
    Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis

    Hypothermia following antipsychotic drug use

    Get PDF
    Objective: Hypothermia is an adverse drug reaction (ADR) of antipsychotic drug (APD) use. Risk factors for hypothermia in ADP users are unknown. We studied which risk factors for hypothermia can be identified based on case reports. Method: Case reports of hypothermia in APD-users found in PUBMED or EMBASE were searched for risk factors. The WHO international database for Adverse Drug Reactions was searched for reports of hypothermia and APD use. Results: The literature search resulted in 32 articles containing 43 case reports. In the WHO database, 480 reports were registered of patients developing hypothermia during the use of APDs which almost equals the number of reports for hyperthermia associated with APD use (n=524). Hypothermia risk seems to be increased in the first days following start or dose increase of APs. APs with strong 5-HT2 antagonism seem to be more involved in hypothermia; 55% of hypothermia reports are for atypical antipsychotics. Schizophrenia was the most prevalent diagnosis in the case reports. Conclusion: Especially in admitted patients who are not able to control their own environment or physical status, frequent measurements of body temperature (with a thermometer that can measure low body temperatures) must be performed in order to detect developing hypothermia

    2-Deoxy-D-Glucose Treatment Induces Ketogenesis, Sustains Mitochondrial Function, and Reduces Pathology in Female Mouse Model of Alzheimer's Disease

    Get PDF
    Previously, we demonstrated that mitochondrial bioenergetic deficits preceded Alzheimer's disease (AD) pathology in the female triple-transgenic AD (3xTgAD) mouse model. In parallel, 3xTgAD mice exhibited elevated expression of ketogenic markers, indicating a compensatory mechanism for energy production in brain. This compensatory response to generate an alternative fuel source was temporary and diminished with disease progression. To determine whether this compensatory alternative fuel system could be sustained, we investigated the impact of 2-deoxy-D-glucose (2-DG), a compound known to induce ketogenesis, on bioenergetic function and AD pathology burden in brain. 6-month-old female 3xTgAD mice were fed either a regular diet (AIN-93G) or a diet containing 0.04% 2-DG for 7 weeks. 2-DG diet significantly increased serum ketone body level and brain expression of enzymes required for ketone body metabolism. The 2-DG-induced maintenance of mitochondrial bioenergetics was paralleled by simultaneous reduction in oxidative stress. Further, 2-DG treated mice exhibited a significant reduction of both amyloid precursor protein (APP) and amyloid beta (Aβ) oligomers, which was paralleled by significantly increased α-secretase and decreased γ-secretase expression, indicating that 2-DG induced a shift towards a non-amyloidogenic pathway. In addition, 2-DG increased expression of genes involved in Aβ clearance pathways, degradation, sequestering, and transport. Concomitant with increased bioenergetic capacity and reduced β-amyloid burden, 2-DG significantly increased expression of neurotrophic growth factors, BDNF and NGF. Results of these analyses demonstrate that dietary 2-DG treatment increased ketogenesis and ketone metabolism, enhanced mitochondrial bioenergetic capacity, reduced β-amyloid generation and increased mechanisms of β-amyloid clearance. Further, these data link bioenergetic capacity with β-amyloid generation and demonstrate that β-amyloid burden was dynamic and reversible, as 2-DG reduced activation of the amyloidogenic pathway and increased mechanisms of β-amyloid clearance. Collectively, these data provide preclinical evidence for dietary 2-DG as a disease-modifying intervention to delay progression of bioenergetic deficits in brain and associated β-amyloid burden

    Ginkgo Biloba Extract Ameliorates Oxidative Phosphorylation Performance and Rescues Aβ-Induced Failure

    Get PDF
    Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer's disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Abeta) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Abeta-induced defects in energy metabolism
    corecore