4,270 research outputs found

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≥2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    The OPAL bugs count survey: exploring the effects of urbanisation and habitat characteristics using citizen science

    Get PDF
    Citizen science projects can gather datasets with observation counts and spatiotemporal coverage far in excess of what can easily be achieved using only professional scientists. However, there exists a potential trade-off between the number of participants and the quality of data gathered. The Bugs Count citizen science project had thousands of participants because of its few barriers to taking part, allowing participation by anyone in England with access to any area of outdoor space. It was designed to scope for both the effects of variation in local habitat and urbanisation on broad taxonomic groups of invertebrates, and the responses of six target ‘Species Quest’ species (Adalia bipunctata, Ocypus olens, Aglais urticae, Palomena prasina, Limax maximus, and Bombus hypnorum) to urbanisation. Participants were asked to search for invertebrates in three areas: ‘soft ground surfaces’, ‘human-made hard surfaces’, and ‘plants’ for 15 min per search. Participants recorded counts of taxa found and a range of environmental information about the survey area. Data samples were weighted according to identification experience and participant age and analysed using canonical correspondence analysis, and tests of observation homogeneity. Species Quest species showed species-specific relationships with urbanisation, but broad taxonomic groups did not show significant relationships with urbanisation. The latter were instead influenced by habitat type and microhabitat availability. The approach used demonstrates that citizen science projects with few barriers to entry can gather viable datasets for scoping broad trends, providing that the projects are carefully designed and analysed to ensure data quality

    The XIIIth Banff Conference on Allograft Pathology: The Banff 2015 Heart Meeting Report: Improving Antibody-Mediated Rejection Diagnostics: Strengths, Unmet Needs, and Future Directions.

    Get PDF
    The 13th Banff Conference on Allograft Pathology was held in Vancouver, British Columbia, Canada from October 5 to 10, 2015. The cardiac session was devoted to current diagnostic issues in heart transplantation with a focus on antibody-mediated rejection (AMR) and small vessel arteriopathy. Specific topics included the strengths and limitations of the current rejection grading system, the central role of microvascular injury in AMR and approaches to semiquantitative assessment of histopathologic and immunophenotypic indicators, the role of AMR in the development of cardiac allograft vasculopathy, the important role of serologic antibody detection in the management of transplant recipients, and the potential application of new molecular approaches to the elucidation of the pathophysiology of AMR and potential for improving the current diagnostic system. Herein we summarize the key points from the presentations, the comprehensive, open and wide-ranging multidisciplinary discussion that was generated, and considerations for future endeavors

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    VEZF1 elements mediate protection from DNA methylation

    Get PDF
    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat

    Exciton Condensation and Perfect Coulomb Drag

    Get PDF
    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects "perfect" drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure

    The body in the library: adventures in realism

    Get PDF
    This essay looks at two aspects of the virtual ‘material world’ of realist fiction: objects encountered by the protagonist and the latter’s body. Taking from Sartre two angles on the realist pact by which readers agree to lend their bodies, feelings, and experiences to the otherwise ‘languishing signs’ of the text, it goes on to examine two sets of first-person fictions published between 1902 and 1956 — first, four modernist texts in which banal objects defy and then gratify the protagonist, who ends up ready and almost able to write; and, second, three novels in which the body of the protagonist is indeterminate in its sex, gender, or sexuality. In each of these cases, how do we as readers make texts work for us as ‘an adventure of the body’

    Risk Factors for Ocular Infection with Chlamydia trachomatis in Children 6 Months following Mass Treatment in Tanzania

    Get PDF
    Trachoma control programs aim for high coverage of endemic communities with oral azithromycin to reduce the pool of infection with Chlamydia trachomatis. However, even with high coverage, infection is seen following treatment. In four communities in Tanzania, we followed every child aged under ten years from baseline through treatment to six months post-treatment. We determined who had infection at baseline and who still had or developed infection six months later. Coverage was over 95% in children in these communities, and infection in these children decreased by over 50% at six months. The study found that, at baseline, uninfected children who were treated had prevalence of infection at 6 months of 6%, but infected children who were treated had prevalence of infection of 22% at 6 months. Other risk factors for infection at 6 months included living in a household with other infected children, and living in a household with untreated children. Our data suggest that households with untreated children might be targeted for more intensive follow up to increase coverage and reduce subsequent infection in the community
    • …
    corecore