13 research outputs found

    The Presence–Absence Situation and Its Impact on the Assemblage Structure and Interspecific Relations of Pronophilina Butterflies in the Venezuelan Andes (Lepidoptera: Nymphalidae)

    Get PDF
    Assemblage structure and altitudinal patterns of Pronophilina, a species-rich group of Andean butterflies, are compared in El Baho and Monte Zerpa, two closely situated and ecologically similar Andean localities. Their faunas differ only by the absence of Pedaliodes ornata Grose-Smith in El Baho. There are, however, important structural differences between the two Pronophilina assemblages. Whereas there are five co-dominant species in Monte Zerpa, including P. ornata, Pedaliodes minabilis Pyrcz is the only dominant with more than half of all the individuals in the sample in El Baho. The absence of P. ornata in El Baho is investigated from historical, geographic, and ecological perspectives exploring the factors responsible for its possible extinction including climate change, mass dying out of host plants, and competitive exclusion. Although competitive exclusion between P. ornata and P. minabilis is a plausible mechanism, considered that their ecological niches overlap, which suggests a limiting influence on each other’s populations, the object of competition was not identified, and the reason of the absence of P. ornata in El Baho could not be established. The role of spatial interference related to imperfect sexual behavioral isolation is evaluated in maintaining the parapatric altitudinal distributions of three pairs of phenotypically similar and related species of Pedaliodes, Corades, and Lymanopoda

    Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections

    Get PDF
    Lethal mutagenesis is an antiviral strategy consisting of virus extinction associated with enhanced mutagenesis. The use of non-mutagenic antiviral inhibitors has faced the problem of selection of inhibitor-resistant virus mutants. Quasispecies dynamics predicts, and clinical results have confirmed, that combination therapy has an advantage over monotherapy to delay or prevent selection of inhibitor-escape mutants. Using ribavirin-mediated mutagenesis of foot-and-mouth disease virus (FMDV), here we show that, contrary to expectations, sequential administration of the antiviral inhibitor guanidine (GU) first, followed by ribavirin, is more effective than combination therapy with the two drugs, or than either drug used individually. Coelectroporation experiments suggest that limited inhibition of replication of interfering mutants by GU may contribute to the benefits of the sequential treatment. In lethal mutagenesis, a sequential inhibitor-mutagen treatment can be more effective than the corresponding combination treatment to drive a virus towards extinction. Such an advantage is also supported by a theoretical model for the evolution of a viral population under the action of increased mutagenesis in the presence of an inhibitor of viral replication. The model suggests that benefits of the sequential treatment are due to the involvement of a mutagenic agent, and to competition for susceptible cells exerted by the mutant spectrum. The results may impact lethal mutagenesis-based protocols, as well as current antiviral therapies involving ribavirin
    corecore