18 research outputs found

    A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches

    Get PDF
    Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch

    Gender-Specific Association of Galanin Polymorphisms with HPA-Axis Dysregulation, Symptom Severity, and Antidepressant Treatment Response

    No full text
    Galanin (GAL) is an estrogen-inducible neuropeptide, highly expressed in brain regions reported to be involved in regulation of mood and anxiety. GAL possibly has a direct modulatory effect on hypothalamic–pituitary–adrenal (HPA)-axis regulation. Recent data from pharmacological and genetic studies indicate a significant function of GAL in stress-related disorders. By using a tag SNP approach covering the locus encoding preprogalanin (PPGAL), earlier findings of female-specific associations of polymorphisms in this locus with panic disorder were expanded to a larger sample of 268 outpatients with anxiety disorders (ADs). Within a larger sample of 541 inpatients with major depressive disorder (MDD), we then tested associations of one PPGAL tag SNP with specific depression symptom clusters and HPA-axis activity assessed by the combined dexamethasone-suppression/CRH-stimulation test both at inpatient admission and discharge (n=298). Gender specificity as well as dependence of the association on levels of circulating estrogens was analyzed. Genotyping revealed high linkage disequilibrium in the promoter area of the PPGAL gene, which includes several estrogen-response elements. Confirming earlier results, rs948854, tagging this promoter region, was associated with more severe anxiety pathology in female AD patients, but not in males. In premenopausal female MDD patients, the same allele of rs948854 was associated with more severe vegetative but not cognitive depressive symptoms at discharge and worse treatment response on antidepressant medication. Furthermore, this allele was associated with higher HPA-axis activity at admission. No significant case–control associations could be observed. However, because of power limitations of both patient samples, small effects cannot be excluded. The reported associations in independent samples of AD and MDD support an estrogen-dependent function of GAL in pathophysiology of anxiety and depression, affecting response to antidepressant treatment
    corecore