202 research outputs found

    Case report: BRCA in the Ashkenazi population: are current testing guidelines too exclusive?

    Get PDF
    The BRCA1/2 genes account for a significant portion of hereditary breast and ovarian cancers and they are especially prevalent in the Ashkenazi Jewish population. Women who have a mutation can prevent breast and ovarian cancer with surgical intervention. We describe an Ashkenazi Jewish patient who illustrates that current testing criteria are too restrictive, particularly for this population of patients. The patient's sister was diagnosed with breast cancer at age 33; however, she was not a mutation carrier. Based on practice guidelines, the patient was not recommended genetic testing. She subsequently underwent direct-to-consumer (DTC) testing and discovered that she was a mutation carrier. This case demonstrates the need for clinicians to be aware of the higher prevalence of BRCA mutations in the Ashkenazi population. It also exemplifies the need to involve medical professionals, including genetic counselors, in the dissemination of DNA test results

    BRCA1 and BRCA2 mutations in a population-based study of male breast cancer

    Get PDF
    Background: The contribution of BRCA1 and BRCA2 to the incidence of male breast cancer (MBC) in the United Kingdom is not known, and the importance of these genes in the increased risk of female breast cancer associated with a family history of breast cancer in a male first-degree relative is unclear. Methods: We have carried out a population-based study of 94 MBC cases collected in the UK. We screened genomic DNA for mutations in BRCA1 and BRCA2 and used family history data from these cases to calculate the risk of breast cancer to female relatives of MBC cases. We also estimated the contribution of BRCA1 and BRCA2 to this risk. Results: Nineteen cases (20%) reported a first-degree relative with breast cancer, of whom seven also had an affected second-degree relative. The breast cancer risk in female first-degree relatives was 2.4 times (95% confidence interval [CI] = 1.4–4.0) the risk in the general population. No BRCA1 mutation carriers were identified and five cases were found to carry a mutation in BRCA2. Allowing for a mutation detection sensitivity frequency of 70%, the carrier frequency for BRCA2 mutations was 8% (95% CI = 3–19). All the mutation carriers had a family history of breast, ovarian, prostate or pancreatic cancer. However, BRCA2 accounted for only 15% of the excess familial risk of breast cancer in female first-degree relatives. Conclusion: These data suggest that other genes that confer an increased risk for both female and male breast cancer have yet to be found

    Estimating the survival benefits gained from providing national cancer genetic services to women with a family history of breast cancer

    Get PDF
    The aim of this paper is to compare a service offering genetic testing and presymptomatic surveillance to women at increased risk of developing breast cancer with its predecessor of no service at all in terms of survival and quality-adjusted survival (QALYs) by means of a Markov cohort chain simulation model. Genetic assessment and presymptomatic care provided between 0.07-1.61 mean additional life years and 0.05-1.67 mean QALYs over no services. Prophylactic surgery and surveillance extended mean life expectancy by 0.41-1.61 and 0.32-0.99 years, respectively over no services for high-risk women. Model outcomes were sensitive to all the parameters varied in the sensitivity analysis. Providing cancer genetic services increase survival and as long as services do not induce adverse psychological effects they also provide more QALYs. The greatest survival and QALY benefits were found for women with identified mutations. As more cancer genes are identified, the survival and cost-effectiveness of genetic services will improve. Although mastectomy provided most additional life years, when quality of life was accounted for oophorectomy was the optimal strategy. Delayed entry into coordinated genetic services was found to diminish the average survival and QALY gains for a woman utilising these services

    Founder populations and their uses for breast cancer genetics

    Get PDF
    Numerous founder mutations have been reported in BRCA1 and BRCA2. For genetic screening of a population with a founder mutation, testing can be targeted to the mutation, allowing for a more rapid and less expensive test. In addition, more precise estimates of the prior probability of carrying a mutation and of the likelihood of a mutation carrier developing cancer should be possible. For a given founder mutation a large number of carriers are available, so that focused scientific studies of penetrance, expression, and genetic and environmental modifiers of risk can be performed. Finally, founder populations may be a powerful resource to localize additional breast cancer susceptibility loci, because of the reduction in locus heterogeneity

    Cancer risk in close relatives of women with early-onset breast cancer – a population-based incidence study

    Get PDF
    Inherited susceptibility to breast cancer is associated with an early onset and bilateral disease. The extent of familial risks has not, however, been fully assessed in population-based incidence studies. The purpose of the study was to quantify the risks for cancers of the breast, ovary and other sites of close relatives of women in whom breast cancer was diagnosed at an early age. Records collected between 1943 and 1990 at the Danish Cancer Registry were searched, and 2860 women were found in whom breast cancer was diagnosed before age 40. Population registers and parish records were used to identify 14 973 parents, siblings and offspring of these women. Cancer occurrence through to 31 December 1993 was determined within the Cancer Registry's files and compared with national incidence rates. Women with early-onset breast cancer were at a nearly fourfold increased risk of developing a new cancer later in life (268 observed vs 68.9 expected). The excess risk was most evident for second cancer of the breast (181 vs 24.5) and for ovarian cancer (20 vs 3.3). For mothers and sisters, risks for cancers of the breast and ovary were significantly increased by two- to threefold. Bilateral breast cancer and breast–ovarian cancer were very strong predictors of familial risks, with one in four female relatives predicted to develop breast and/or ovarian cancer by age 75. Mothers had a slightly increased risk of colon cancer, but not endometrial cancer. The risk for breast cancer was also increased among fathers (standardized incidence ratio 2.5; 95% CI 0.5–7.4) and especially brothers (29; 7.7–74), although based on small numbers. The risk for prostatic cancer was unremarkable. In this large population-based survey, the first-degree relatives of women who developed breast cancer before age 40 were prone to ovarian cancer as well as male and female breast cancer, but not other tumours that may share susceptibility genes with breast cancer. © 1999 Cancer Research Campaig

    Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline inactivating mutations in <it>BRCA1 </it>and <it>BRCA2 </it>underlie a major proportion of the inherited predisposition to breast and ovarian cancer. These mutations are usually detected by DNA sequencing. Cost-effective and rapid methods to screen for these mutations would enable the extension of mutation testing to a broader population. High resolution melting (HRM) analysis is a rapid screening methodology with very low false negative rates. We therefore evaluated the use of HRM as a mutation scanning tool using, as a proof of principle, the three recurrent BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population in addition to other mutations that occur in the same regions.</p> <p>Methods</p> <p>We designed PCR amplicons for HRM scanning of <it>BRCA1 </it>exons 2 and 20 (carrying the founder mutations185delAG and 5382insC respectively) and the part of the <it>BRCA2 </it>exon 11 carrying the 6174delT founder mutation. The analysis was performed on an HRM-enabled real time PCR machine.</p> <p>Results</p> <p>We tested DNA from the peripheral blood of 29 individuals heterozygous for known mutations. All the Ashkenazi founder mutations were readily identified. Other mutations in each region that were also readily detected included the recently identified Greek founder mutation 5331G>A in exon 20 of <it>BRCA1</it>. Each mutation had a reproducible melting profile.</p> <p>Conclusion</p> <p>HRM is a simple and rapid scanning method for known and unknown <it>BRCA1 </it>and <it>BRCA2 </it>germline mutations that can dramatically reduce the amount of sequencing required and reduce the turnaround time for mutation screening and testing. In some cases, such as tracking mutations through pedigrees, sequencing may only be necessary to confirm positive results. This methodology will allow for the economical screening of founder mutations not only in people of Ashkenazi Jewish ancestry but also in other populations with founder mutations such as Central and Eastern Europeans (<it>BRCA1 </it>5382insC) and Greek Europeans (<it>BRCA1 </it>5331G>A).</p

    Prevalence of BRCA1 and BRCA2 Jewish mutations in Spanish breast cancer patients

    Get PDF
    We screened the 185delAG and 5382insC (BRCA1) and the 6174delT (BRCA2) mutation in 298 Spanish women with breast cancer. Two women (one with Sephardic ancestors) presented the 185delAG mutation and the same haplotype reported in Ashkenazim with this mutation. This suggests a common origin of the 185delAG in both Sephardic and Ashkenazi populations. © 1999 Cancer Research Campaig

    Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies

    Get PDF
    BACKGROUND: Pharmacogenetic studies are essential in understanding the interindividual variability of drug responses. DNA sample collection for genotyping is a critical step in genetic studies. A method using dried blood samples from finger-puncture, collected on DNA-cards, has been described as an alternative to the usual venepuncture technique. The purpose of this study is to evaluate the implementation of the DNA cards method in a multicentre clinical trial, and to assess the degree of investigators' satisfaction and the acceptance of the patients perceived by the investigators. METHODS: Blood samples were collected on DNA-cards. The quality and quantity of DNA recovered were analyzed. Investigators were questioned regarding their general interest, previous experience, safety issues, preferences and perceived patient satisfaction. RESULTS: 151 patients' blood samples were collected. Genotyping of GST polymorphisms was achieved in all samples (100%). 28 investigators completed the survey. Investigators perceived patient satisfaction as very good (60.7%) or good (39.3%), without reluctance to finger puncture. Investigators preferred this method, which was considered safer and better than the usual methods. All investigators would recommend using it in future genetic studies. CONCLUSION: Within the clinical trial setting, the DNA-cards method was very well accepted by investigators and patients (in perception of investigators), and was preferred to conventional methods due to its ease of use and safety

    A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes

    Get PDF
    In computing the probability that a woman is a BRCA1 or BRCA2 carrier for genetic counselling purposes, it is important to allow for the fact that other breast cancer susceptibility genes may exist. We used data from both a population based series of breast cancer cases and high risk families in the UK, with information on BRCA1 and BRCA2 mutation status, to investigate the genetic models that can best explain familial breast cancer outside BRCA1 and BRCA2 families. We also evaluated the evidence for risk modifiers in BRCA1 and BRCA2 carriers. We estimated the simultaneous effects of BRCA1, BRCA2, a third hypothetical gene ‘BRCA3’, and a polygenic effect using segregation analysis. The hypergeometric polygenic model was used to approximate polygenic inheritance and the effect of risk modifiers. BRCA1 and BRCA2 could not explain all the observed familial clustering. The best fitting model for the residual familial breast cancer was the polygenic, although a model with a single recessive allele produced a similar fit. There was also significant evidence for a modifying effect of other genes on the risks of breast cancer in BRCA1 and BRCA2 mutation carriers. Under this model, the frequency of BRCA1 was estimated to be 0.051% (95% CI: 0.021–0.125%) and of BRCA2 0.068% (95% CI: 0.033–0.141%). The breast cancer risk by age 70 years, based on the average incidence over all modifiers was estimated to be 35.3% for BRCA1 and 50.3% for BRCA2. The corresponding ovarian cancer risks were 25.9% for BRCA1 and 9.1% for BRCA2. The findings suggest that several common, low penetrance genes with multiplicative effects on risk may account for the residual non-BRCA1/2 familial aggregation of breast cancer. The modifying effect may explain the previously reported differences between population based estimates for BRCA1/2 penetrance and estimates based on high-risk families
    corecore