299 research outputs found
The design of an optimal Bonus-Malus System based on the Sichel distribution
This chapter presents the design of an optimal Bonus-Malus System (BMS) using the Sichel distribution to model the claim frequency distribution. This system is proposed as an alternative to the optimal BMS obtained by the traditional Negative Binomial model [19]. The Sichel distribution has a thicker tail than the Negative Binomial distribution and it is considered as a plausible model for highly dispersed count data. We also consider the optimal BMS provided by the Poisson-Inverse Gaussian distribution (PIG), which is a special case of the Sichel distribution. Furthermore, we develop a generalised BMS that takes into account both the a priori and a posteriori characteristics of each policyholder. For this purpose we consider the generalised additive models for location, scale and shape (GAMLSS) in order to use all available information in the estimation of the claim frequency distribution. Within the framework of the GAMLSS we propose the Sichel GAMLSS for assessing claim frequency as an alternative to the Negative Binomial Type I (NBI) regression model used by Dionne and Vanasse [9, 10]. We also consider the NBI and PIG GAMLSS for assessing claim frequency
Calcitriol modulates the CD46 pathway in T cells
The complement regulator CD46 is a costimulatory molecule for human T cells that induces a regulatory Tr1 phenotype, characterized by large amounts of IL-10 secretion. Secretion of IL-10 upon CD46 costimulation is largely impaired in T cells from patients with multiple sclerosis (MS). Vitamin D can exert a direct effect on T cells, and may be beneficial in several pathologies, including MS. In this pilot study, we examined whether active vitamin D (1,25(OH)2D3 or calcitriol) could modulate the CD46 pathway and restore IL-10 production by CD46-costimulated CD4+ T cells from patients with MS. In healthy T cells, calcitriol profoundly affects the phenotype of CD46-costimulated CD4+ T cells, by increasing the expression of CD28, CD25, CTLA-4 and Foxp3 while it concomitantly decreased CD46 expression. Similar trends were observed in MS CD4+ T cells except for CD25 for which a striking opposite effect was observed: while CD25 was normally induced on MS T cells by CD46 costimulation, addition of calcitriol consistently inhibited its induction. Despite the aberrant effect on CD25 expression, calcitriol increased the IL-10:IFNc ratio, characteristic of the CD46-induced Tr1 phenotype, in both T cells from healthy donors and patients with MS. Hence, we show that calcitriol affects the CD46 pathway, and that it promotes anti-inflammatory responses mediated by CD46. Moreover, it might be beneficial for T cell responses in MS
Equine post-breeding endometritis: A review
The deposition of semen, bacteria and debris in the uterus of the mare after breeding normally induces a self-limiting endometritis. The resultant fluid and inflammatory products are cleared by 48 hours post cover. Mares that are susceptible to persistent post-breeding endometritis (PPBEM) have impaired uterine defence and clearance mechanisms, making them unable to resolve this inflammation within the normal time. This persists beyond 48 hours post-breeding and causes persistent fluid accumulation within the uterus. Mares with PPBEM have an increased rate of embryonic loss and a lower overall pregnancy rate than those without the condition. To enhance conception rates, mares at high risk need optimal breeding management as well as early diagnosis, followed by the most appropriate treatment. This article reviews the pathogenesis, diagnosis and treatment of PPBEM and the management of affected mares
Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1
The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.This work was supported by Biotechnology and Biological Research Council (BBSRC) Grants BB/I019227/1 (to A. W. M.) and BB/I019669/1 (to C. A.) underpinning this research program and supporting the research of A. J. C. and K. J. M
CHOP Mediates Endoplasmic Reticulum Stress-Induced Apoptosis in Gimap5-Deficient T Cells
Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells
Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation
Increasing the options for reducing adverse events: Results from a modified Delphi technique
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: The aim of this paper is to illustrate a simple method for increasing the range of possible options for reducing adverse events in Australian hospitals, which could have been, but was not, adopted in the wake of the landmark 1995 'Quality in Australian Health Care ' study, and to report the suggestions and the estimated lapse time before they would impact upon mortality and morbidity. Method: The study used a modified Delphi technique that first elicited options for reducing adverse events from an invited panel selected on the basis of their knowledge of the area of adverse events and quality assurance. Initial suggestions were collated and returned to them for reconsideration and comment. Results: Completed responses from both stages were obtained from 20 of those initially approached. Forty-one options for reducing AEs were identified with an average lapse time of 3.5 years. Hospital regulation had the least delay (2.4 years) and out of hospital information the greatest (6.4 years). Conclusion: Following identification of the magnitude of the problem of adverse events in the 'Quality in Australian Health Care ' study a more rapid and broad ranging response was possible than occurred. Apparently viable options for reducing adverse events and associated mortality and morbidity remain unexploited
- …