162 research outputs found

    The 3-PPPS parallel robot with U-shape Base, a 6-DOF parallel robot with simple kinematics

    Get PDF
    International audienceOne of the main problems associated with the use of 6 DOF parallel robots remains the solving of their kinematic models. This is rarely possible to analytically solve their models thereby justifying the application of numerical methods. These methods are difficult to implement in an industrial controller and can cause solution bifurcations close to singularities resulting in following an unplanned trajectory. Recently, a 3-PPPS robot with U-shaped base was introduced where an analytical kinematic model can be derived. Previously, quaternion parameters were used to represent the orientation of the mobile platform. To allow for simpler model handling, this article introduces the use of Euler angles which have a physical meaning for the users. Compact writing of the direct and inverse kinematic model is thus obtained. Using algebraic and cylindrical decomposition for the workspace, this provides a simpler representation of the largest domain without singularity around the " home " configuration

    Full-rotation singularity-safe workspace for kinematically redundant parallel robots

    Get PDF
    This paper introduces and computes a novel type of work-space for kinematically redundant parallel robots that defines the regionin which the end-effector can make full rotations without coming close tosingular configurations; it departs from the traditional full-rotation dex-terous workspace, which considers full rotations without encounteringsingularities but does not take into account the performance problemsresulting from closeness to these locations. Kinematically redundant ar-chitectures have the advantage of being able to be reconfigured withoutchanging the pose of the end-effector, thus being capable of avoidingsingularities and being suitable for applications where high dexterityis required. Knowing the workspace of these robots in which the end-effector is able to complete full, smooth rotations is a key design aspectto improve performance; however, since this singularity-safe workspaceis generally small, or even non-existent, in most parallel manipulators,its characterisation and calculation have not received attention in theliterature. The proposed workspace for kinematically redundant robotsis introduced using a planar parallel architecture as a case study; the for-mulation works by treating the manipulator as two halves, calculatingthe full-rotation workspace of the end-effector for each half whilst ensur-ing singularity conditions are not approached or met, and then findingthe intersection of both regions. The method is demonstrated ontwoexample robot instances, and a numerical analysis is also carried out asa comparison

    Computation of the Transient in Max-Plus Linear Systems via SMT-Solving

    Full text link
    This paper proposes a new approach, grounded in Satisfiability Modulo Theories (SMT), to study the transient of a Max-Plus Linear (MPL) system, that is the number of steps leading to its periodic regime. Differently from state-of-the-art techniques, our approach allows the analysis of periodic behaviors for subsets of initial states, as well as the characterization of sets of initial states exhibiting the same specific periodic behavior and transient. Our experiments show that the proposed technique dramatically outperforms state-of-the-art methods based on max-plus algebra computations for systems of large dimensions.Comment: The paper consists of 22 pages (including references and Appendix). It is accepted in FORMATS 2020 First revisio

    Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

    Get PDF
    Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09mm (translations) and of (Formula presented.) (rotations), maximum observed errors in the order of 0.12mm (translations) and of (Formula presented.) (rotations), and a reduction repeatability of 0.02mm and (Formula presented.). Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality

    Computing cross-sections of the workspace of cable-driven parallel robots with 6 sagging cables

    Get PDF
    International audienceFinding the workspace of cable driven parallel robots (CDPR) with sagging cables (i.e. elastic and deformable cables) is a problem that has never been fully addressed in the literature as this is a complex issue: the inverse kinematics may have multiple solutions and the equations that describe the problem are non-linear and non algebraic. We address here the problem of determining an approximation of the border of horizontal cross-sections of the workspace for CDPR with 6 cables. We present an algorithm that give an outline of this border but also rises several theoretical issues. We then propose another algorithm that allow to determine a polygonal approximation of the workspace border induced by a specific constraint. All these algorithms are illustrated on a very large CDPR

    Geometry and kinematics for a spherical-base integrated parallel mechanism

    Get PDF
    Parallel mechanisms, in general, have a rigid base and a moving platform connected by several limbs. For achieving higher mobility and dexterity, more degrees of freedom are introduced to the limbs. However, very few researchers focus on changing the design of the rigid base and making it foldable and reconfigurable to improve the performance of the mechanism. Inspired by manipulating an object with a metamorphic robotic hand, this paper presents for the first time a parallel mechanism with a reconfigurable base. This novel spherical-base integrated parallel mechanism has an enlarged workspace compared with traditional parallel manipulators. Evolution and structure of the proposed parallel mechanism is introduced and the geometric constraint of the mechanism is investigated based on mechanism decomposition. Further, kinematics of the proposed mechanism is reduced to the solution of a univariate polynomial of degree 8. Moreover, screw theory based Jacobian is presented followed by the velocity analysis of the mechanism

    Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways

    Get PDF
    The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria

    Early influences on cardiovascular and renal development

    Full text link

    The Confrontation between General Relativity and Experiment

    Full text link
    • 

    corecore