87 research outputs found
Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature
In natural systems plants face a plethora of antagonists and thus have evolved multiple defence strategies. Lima bean (Phaseolus lunatus L.) is a model plant for studies of inducible indirect anti-herbivore defences including the production of volatile organic compounds (VOCs) and extrafloral nectar (EFN). In contrast, studies on direct chemical defence mechanisms as crucial components of lima beans' defence syndrome under natural conditions are nonexistent. In this study, we focus on the cyanogenic potential (HCNp; concentration of cyanogenic glycosides) as a crucial parameter determining lima beans' cyanogenesis, i.e. the release of toxic hydrogen cyanide from preformed precursors. Quantitative variability of cyanogenesis in a natural population of wild lima bean in Mexico was significantly correlated with missing leaf area. Since existing correlations do not by necessity mean causal associations, the function of cyanogenesis as efficient plant defence was subsequently analysed in feeding trials. We used natural chrysomelid herbivores and clonal lima beans with known cyanogenic features produced from field-grown mother plants. We show that in addition to extensively investigated indirect defences, cyanogenesis has to be considered as an important direct defensive trait affecting lima beans' overall defence in nature. Our results indicate the general importance of analysing ‘multiple defence syndromes’ rather than single defence mechanisms in future functional analyses of plant defences
Salivary Gland Disorders and Diseases
Saliva plays an important role in maintaining healthy oral mucosa and teeth as well as oral function by continually covering and lubricating the oral tissues. Salivary gland dysfunction designates decreased saliva flow rate (salivary gland hypofunction), increased saliva flow rate (sialorrhea or hypersalivation), and changed saliva composition. Xerostomia (the subjective feeling of oral dryness) is often associated with salivary gland hypofunction and may severely affect nutritional intake, social interaction and quality of life. Local or systemic disorders and diseases are common causes of compromised saliva secretion. Some of these are related to gland pathology or to the pathophysiological conditions of the host, whereas others affect the gland innervation or are an iatrogenic result of treatment of a disease (e.g., radiation therapy for head and neck cancer, side effects of medications). In general, many patients suffering from diseases that influence salivary gland function also undergo treatments that may impair saliva secretion and/or induce xerostomia as an adverse effect. Consequently, it can be difficult to distinguish what can be attributed to the disease per se or what can be induced by treatment (e.g., medication intake). Thus, a thorough diagnostic workup and early diagnosis of salivary gland dysfunction are crucial to provide appropriate evidence-based treatment of salivary gland dysfunction to prevent oral sequelae and to initiate individualized alleviating management strategies of xerostomia.</p
No interaction between competition and herbivory in limiting introduced Cirsium vulgare rosette growth and reproduction
The Predatory Mite Phytoseiulus persimilis Does Not Perceive Odor Mixtures As Strictly Elemental Objects
Organic matter controls of iron incorporation in growing sea ice
This study presents the first laboratory-controlled sea-ice growth experiment conducted under trace metal clean conditions. The role played by organic matter in the incorporation of iron (Fe) into sea ice was investigated by means of laboratory ice-growth experiments using a titanium cold-finger apparatus. Experiments were also conducted to understand the role of extracellular polymeric substances (EPS) in the enrichment of ammonium in sea ice. Sea ice was grown from several seawater solutions containing different quantities and qualities of particulate Fe (PFe), dissolved Fe (DFe) and organic matter. Sea ice and seawater were analyzed for particulate organic carbon and nitrogen, macro-nutrients, EPS, PFe, and DFe, and particulate aluminum. The experiments showed that biogenic PFe is preferentially incorporated into sea ice compared to lithogenic PFe. Furthermore, sea ice grown from ultra-violet (UV) and non-UV treated seawaters exhibits contrasting incorporation rates of organic matter and Fe. Whereas, the effects of UV-treatments were not always significant, we do find indications that the type or organic matter controls the enrichment of Fe in forming sea ice. Specifically, we come to the conclusion that the incorporation of DFe is favored by the presence of organic ligands in the source solution
H-1 chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter
MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR spectroscopy revealed guanidinoacetate (GAA) in the absence of creatine. New is that GAA signals are more prominent in gray matter than in white. In the prevailing view, that enzyme deficiency is localized in liver and pancreas and that all GAA is transported into the brain from the blood and the cerebrospinal fluid, this would be compatible with a more limited uptake and/or better clearance of GAA from the white matter compared to the grey matter
Field observations and physical-biogeochemical modeling suggest low silicon affinity for Antarctic fast ice diatoms
We use field observations from late spring and a one‐dimensional sea‐ice model to explore a high nutrient, high chlorophyll system in Antarctic land‐fast ice. Lack of variability in chlorophyll a concentration and organic carbon content over the 17‐day sampling period suggests a balance between macronutrient sources and biological uptake. Nitrate, nitrite, phosphate, and ammonium were measured at concentrations well above salinity‐predicted levels, indicating nutrient accumulation fueled by remineralization processes. However, silicic acid (DSi) was depleted relative to seawater and was potentially limiting. One‐dimensional physical‐biogeochemical sea‐ice model simulations at the observation site achieve extremely high algal growth and DSi uptake with a DSi half‐saturation constant used for pelagic diatoms (KSi = 3.9 μM) and are not sufficiently improved by tuning the DSi:carbon ratio or DSi remineralization rate. In contrast, diatom biomass in the bottom ice, which makes up 70% of the observed chlorophyll, is simulated using KSi an order of magnitude higher (50 μM), a value similar to that measured in a few Antarctic diatom cultures. Some sea‐ice diatoms may therefore experience limitation at relatively high ambient DSi concentrations compared to pelagic diatoms. Our study highlights the urgent need for observational data on sea‐ice algal affinity for DSi to further support this hypothesis. A lower algal growth rate increases model predictions of DSi in the upper sea ice to more accurate concentrations. The model currently does not account for the non‐diatom communities that dominate those layers, and thus, modeling diatom communities overpredicts DSi uptake in the upper ice.</p
- …
