12 research outputs found
Does consultation improve decision-making?
This paper reports an experiment designed to test whether prior consultation within a group affects subsequent individual decision-making in tasks where demonstrability of correct solutions is low. In our experiment, subjects considered two paintings created by two different artists and were asked to guess which artist made each painting. We observed answers given by individuals under two treatments: In one, subjects were allowed the opportunity to consult with other participants before making their private decisions; in the other, there was no such opportunity. Our primary findings are that subjects in the first treatment evaluate the opportunity to consult positively, but they perform significantly worse and earn significantly less
Rationality versus reality: the challenges of evidence-based decision making for health policy makers
<p>Abstract</p> <p>Background</p> <p>Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process.</p> <p>Discussion</p> <p>We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence.</p> <p>Summary</p> <p>In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved.</p
Ageing, adipose tissue, fatty acids and inflammation
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults
Cerebral cavernous malformations are driven by ADAMTS5 proteolysis of versican.
Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation
Endothelial TLR4 and the microbiome drive cerebral cavernous malformations.
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment