51 research outputs found
Contribution of human hematopoietic stem cells to liver repair
Immune-deficient mouse models of liver damage allow examination of human stem cell migration to sites of damage and subsequent contribution to repair and survival. In our studies, in the absence of a selective advantage, transplanted human stem cells from adult sources did not robustly become hepatocytes, although some level of fusion or hepatic differentiation was documented. However, injected stem cells did home to the injured liver tissue and release paracrine factors that hastened endogenous repair and enhanced survival. There were significantly higher levels of survival in mice with a toxic liver insult that had been transplanted with human stem cells but not in those transplanted with committed progenitors. Transplantation of autologous adult stem cells without conditioning is a relatively safe therapy. Adult stem cells are known to secrete bioactive factors that suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate recruitment, retention, mitosis, and differentiation of tissue-residing stem cells. These paracrine effects are distinct from the direct differentiation of stem cells to repair tissue. In patients at high risk while waiting for a liver transplant, autologous stem cell therapy could be considered, as it could delay the decline in liver function
Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells
Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy
- …