38 research outputs found
The evolution of rotating stars
First, we review the main physical effects to be considered in the building
of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The
internal rotation law evolves as a result of contraction and expansion,
meridional circulation, diffusion processes and mass loss. In turn,
differential rotation and mixing exert a feedback on circulation and diffusion,
so that a consistent treatment is necessary.
We review recent results on the evolution of internal rotation and the
surface rotational velocities for stars on the Upper MS, for red giants,
supergiants and W-R stars. A fast rotation is enhancing the mass loss by
stellar winds and reciprocally high mass loss is removing a lot of angular
momentum. The problem of the ``break-up'' or -limit is critically
examined in connection with the origin of Be and LBV stars. The effects of
rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the
blue to red supergiant ratios, the formation of W-R stars, the chemical
abundances in massive stars as well as in red giants and AGB stars, are
reviewed in relation to recent observations for stars in the Galaxy and
Magellanic Clouds. The effects of rotation on the final stages and on the
chemical yields are examined, as well as the constraints placed by the periods
of pulsars. On the whole, this review points out that stellar evolution is not
only a function of mass M and metallicity Z, but of angular velocity
as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and
Astrophysics, vol. 38 (2000
Circumstellar discs: What will be next?
This prospective chapter gives our view on the evolution of the study of
circumstellar discs within the next 20 years from both observational and
theoretical sides. We first present the expected improvements in our knowledge
of protoplanetary discs as for their masses, sizes, chemistry, the presence of
planets as well as the evolutionary processes shaping these discs. We then
explore the older debris disc stage and explain what will be learnt concerning
their birth, the intrinsic links between these discs and planets, the hot dust
and the gas detected around main sequence stars as well as discs around white
dwarfs.Comment: invited review; comments welcome (32 pages
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure
L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it
Digestion of wheat gluten and potato protein by the preruminant calf: digestibility, amino acid composition and immunoreactive proteins in ileal digesta
International audienc
Digestibility, blood levels of nutrients and skin responses of calves fed soyabean and lupin proteins
International audienc
Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif
Salmonella enterica serovar typhimurium (S. typhimurium) is an intracellular pathogen that causes macrophage cell death by at least two different mechanisms. Rapid cell death is dependent on the Salmonella pathogenicity island-1 protein SipB whereas delayed cell death is independent of SipB and occurs 18–24 hr post infection. Lipopolysaccharide (LPS) is essential for the delayed cell death. LPS is the main structural component of the outer membrane of Gram-negative bacteria and is recognized by Toll-like receptor 4, signalling via the adapter proteins Mal, MyD88, Tram and Trif. Here we show that S. typhimurium induces SipB-independent cell death through Toll-like receptor 4 signalling via the adapter proteins Tram and Trif. In contrast to wild type bone marrow derived macrophages (BMDM), Tram–/– and Trif–/– BMDM proliferate in response to Salmonella infection