44 research outputs found

    Crystallization of strongly interacting photons in a nonlinear optical fiber

    Full text link
    Understanding strongly correlated quantum systems is a central problem in many areas of physics. The collective behavior of interacting particles gives rise to diverse fundamental phenomena such as confinement in quantum chromodynamics, phase transitions, and electron fractionalization in the quantum Hall regime. While such systems typically involve massive particles, optical photons can also interact with each other in a nonlinear medium. In practice, however, such interactions are often very weak. Here we describe a novel technique that allows the creation of a strongly correlated quantum gas of photons using one-dimensional optical systems with tight field confinement and coherent photon trapping techniques. The confinement enables the generation of large, tunable optical nonlinearities via the interaction of photons with a nearby cold atomic gas. In its extreme, we show that a quantum light field can undergo fermionization in such one-dimensional media, which can be probed via standard photon correlation measurements

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram

    Dynamics and age of formation of the Seram-Ambon ophiolites (Central Indonesia)

    No full text
    National audienc
    corecore