572 research outputs found
On the Effective Description of Large Volume Compactifications
We study the reliability of the Two-Step moduli stabilization in the type-IIB
Large Volume Scenarios with matter and gauge interactions. The general analysis
is based on a family of N=1 Supergravity models with a factorizable Kaehler
invariant function, where the decoupling between two sets of fields without a
mass hierarchy is easily understood. For the Large Volume Scenario particular
analyses are performed for explicit models, one of such developed for the first
time here, finding that the simplified version, where the Dilaton and Complex
structure moduli are regarded as frozen by a previous stabilization, is a
reliable supersymmetric description whenever the neglected fields stand at
their leading F-flatness conditions and be neutral. The terms missed by the
simplified approach are either suppressed by powers of the Calabi-Yau volume,
or are higher order operators in the matter fields, and then irrelevant for the
moduli stabilization rocedure. Although the power of the volume suppressing
such corrections depends on the particular model, up to the mass level it is
independent of the modular weight for the matter fields. This at least for the
models studied here but we give arguments to expect the same in general. These
claims are checked through numerical examples. We discuss how the factorizable
models present a context where despite the lack of a hierarchy with the
supersymmetry breaking scale, the effective theory still has a supersymmetric
description. This can be understood from the fact that it is possible to find
vanishing solution for the auxiliary components of the fields being integrated
out, independently of the remaining dynamics. Our results settle down the
question on the reliability of the way the Dilaton and Complex structure are
treated in type-IIB compactifications with large compact manifold volumina.Comment: 23 pages + 2 appendices (38 pages total). v2: minor improvements,
typos fixed. Version published in JHE
Constraints on LVS Compactifications of IIB String Theory
We argue that once all theoretical and phenomenological constraints are
imposed on the different versions of the Large Volume Scenario (LVS)
compactifications of type IIB string theory, one particular version is favored.
This is essentially a sequestered one in which the soft terms are generated by
Weyl anomaly and RG running effects. We also show that arguments questioning
sequestering in LVS models are not relevant in this case.Comment: 14 pages, additional discussion of D7 brane case and mSUGRA,
reference adde
Froggatt-Nielsen models from E8 in F-theory GUTs
This paper studies F-theory SU(5) GUT models where the three generations of
the standard model come from three different curves. All the matter is taken to
come from curves intersecting at a point of enhanced E8 gauge symmetry. Giving
a vev to some of the GUT singlets naturally implements a Froggatt-Nielsen
approach to flavour structure. A scan is performed over all possible models and
the results are filtered using phenomenological constraints. We find a unique
model that fits observations of quark and lepton masses and mixing well. This
model suffers from two drawbacks: R-parity must be imposed by hand and there is
a doublet-triplet splitting problem.Comment: 42 pages; v2:journal version; v3:corrected typo in neutrino masse
FCNC Processes from D-brane Instantons
Low string scale models might be tested at the LHC directly by their Regge
resonances. For such models it is important to investigate the constraints of
Standard Model precision measurements on the string scale. It is shown that
highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic
decays of the D0-meson provide non-negligible lower bounds on both the
perturbatively and surprisingly also non-perturbatively induced string theory
couplings. We present both the D-brane instanton formalism to compute such
amplitudes and discuss various possible scenarios and their constraints on the
string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file
adde
Wavefunctions and the Point of E8 in F-theory
In F-theory GUTs interactions between fields are typically localised at
points of enhanced symmetry in the internal dimensions implying that the
coefficient of the associated operator can be studied using a local
wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit
a maximum symmetry enhancement at a point to E8, and in this case all the
operators of the theory can be associated to the same point. We take initial
steps towards the study of operators in such theories. We calculate
wavefunctions and their overlaps around a general point of enhancement and
establish constraints on the local form of the fluxes. We then apply the
general results to a simple model at a point of E8 enhancement and calculate
some example operators such as Yukawa couplings and dimension-five couplings
that can lead to proton decay.Comment: 46 page
On hypercharge flux and exotics in F-theory GUTs
We study SU(5) Grand Unified Theories within a local framework in F-theory
with multiple extra U(1) symmetries arising from a small monodromy group. The
use of hypercharge flux for doublet-triplet splitting implies massless exotics
in the spectrum that are protected from obtaining a mass by the U(1)
symmetries. We find that lifting the exotics by giving vacuum expectation
values to some GUT singlets spontaneously breaks all the U(1) symmetries which
implies that proton decay operators are induced. If we impose an additional
R-parity symmetry by hand we find all the exotics can be lifted while proton
decay operators are still forbidden. These models can retain the gauge coupling
unification accuracy of the MSSM at 1-loop. For models where the generations
are distributed across multiple curves we also present a motivation for the
quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen
approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models
without a global E8 structure, added ref, journal versio
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
Kahler Moduli Inflation Revisited
We perform a detailed numerical analysis of inflationary solutions in Kahler
moduli of type IIB flux compactifications. We show that there are inflationary
solutions even when all the fields play an important role in the overall shape
of the scalar potential. Moreover, there exists a direction of attraction for
the inflationary trajectories that correspond to the constant volume direction.
This basin of attraction enables the system to have an island of stability in
the set of initial conditions. We provide explicit examples of these
trajectories, compute the corresponding tilt of the density perturbations power
spectrum and show that they provide a robust prediction of n_s approximately
0.96 for 60 e-folds of inflation.Comment: 27 pages, 9 figure
Moduli Stabilization and Inflationary Cosmology with Poly-Instantons in Type IIB Orientifolds
Equipped with concrete examples of Type IIB orientifolds featuring
poly-instanton corrections to the superpotential, the effects on moduli
stabilization and inflationary cosmology are analyzed. Working in the framework
of the LARGE volume scenario, the Kaehler modulus related to the size of the
four-cycle supporting the poly-instanton contributes sub-dominantly to the
scalar potential. It is shown that this Kaehler modulus gets stabilized and, by
displacing it from its minimum, can play the role of an inflaton. Subsequent
cosmological implications are discussed and compared to experimental data.Comment: 38 pages, 7 figures, Reference added, Typo fixed, Published versio
D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics
We discuss general properties of D-brane model building at toric
singularities. Using dimer techniques to obtain the gauge theory from the
structure of the singularity, we extract results on the matter sector and
superpotential of the corresponding gauge theory. We show that the number of
families in toric phases is always less than or equal to three, with a unique
exception being the zeroth Hirzebruch surface. With the physical input of three
generations we find that the lightest family of quarks is massless and the
masses of the other two can be hierarchically separated. We compute the CKM
matrix for explicit models in this setting and find the singularities possess
sufficient structure to allow for realistic mixing between generations and CP
violation.Comment: 55 pages, v2: typos corrected, minor comments adde
- …
