36 research outputs found

    Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    Get PDF
    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects

    The Structure of Strontium Titanate Bi-crystal Grain Boundaries

    No full text

    Atomic-scale model of the grain boundary potential in perovskite oxides

    No full text
    A combination of experiments and theoretical calculations is used to develop an atomic-scale model of the grain boundary potential in perovskite oxides. More specifically, pristine 8degrees and 58degrees [001] tilt grain boundaries in SrTiO3, which can be regarded as model systems for all cubic perovskite systems, are examined by Z-contrast imaging and electron-energy-loss spectroscopy. Based on results obtained from these systems, distance-valence least-square analysis and multiple-scattering calculations are used to determine the density of grain boundary states for the 8degrees and 58degrees grain boundaries, respectively. To compute the grain boundary potentials, the Thomas-Fermi approach of screened charges and the classical Schottky model is used. The validity of both models for various perovskite oxide grain boundary configurations is discussed, and the appropriate grain boundary potentials are compared with previously reported data

    Observing Impurity Doping in Oxide Grain Boundaries Using STEM

    No full text
    corecore