348 research outputs found

    Abatement of particulate-laden SO2 in tapered bubble column with internals

    Get PDF
    The performance of particulate-laden SO2 scrubbing in a modified tapered bubble column with internals is reported in this article. The presence of particles improved the particulate-laden SO2 removal efficiency to about 15% that was elucidated by the facilitated adsorptive mass transport. Experimentation revealed that nearly 100% removal efficiency of particulate-laden SO2 was achievable without any additives or pretreatment under certain operating condition of the scrubber. An empirical correlation was developed to predict the performance of the modified tapered scrubber. Experimental values fitted excellently well with the predicted values through the correlation (within ±5% deviation). The performance of the modified tapered bubble scrubber with column internals has been found to be better than a tapered bubble column without any internals

    Comparison of prognostic scores and surgical approaches to treat spinal metastatic tumors: A review of 57 cases

    Get PDF
    Surgical treatment of metastatic spinal cord compression with or without neural deficit is controversial. Karnofsky and Tokuhashi scores have been proposed for prognosis of spinal metastasis. Here, we conducted a retrospective analysis of Karnofsky and modified Tokuhashi scores in 57 consecutive patients undergoing surgery for secondary spinal metastases to evaluate the value of these scores in aiding decision making for surgery. Comparison of preoperative Karnofsky and modified Tokuhashi scores with the type of the surgical approach for each patient revealed that both scores not only reliably estimate life expectancy, but also objectively improved surgical decisions. When the general status of the patient is poor (i.e., Karnofsky score less than 40% or modified Tokuhashi score of 5 or greater), palliative treatments and radiotherapy, rather than surgery, should be considered

    Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    Get PDF
    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O2 consumption or CO2 production, in the strains used in this study

    Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles

    Get PDF
    Purpose Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero. Methods For determination of globally induced strain in m. gastrocnemius in dissected human cadavers several knee joint angles were imposed, while keeping ankle joint angle constant and measuring its muscle-tendon complex length changes. In vivo local strains in both gastrocnemius and soleus muscles were calculated using MRI techniques in healthy human volunteers comparing images taken at static knee angles of 173° and 150°. Results Imposed global strains on gastrocnemius were much smaller than local strains. High distributions of strains were encountered, e.g. overall lengthened muscle contains locally lengthened, as well as shortened areas within it. Substantial strains were not limited to gastrocnemius, but were found also in synergistic soleus muscle, despite the latter muscle-tendon complex length remaining isometric (constant ankle angle: i.e. global strain = 0), as it does not cross the knee. Based on results of animal experiments this effect is ascribed to myofascial connections between these synergistic muscles. The most likely pathway is the neurovascular tract within the anterior crural compartment (i.e. the collagen reinforcements of blood vessels, lymphatics and nerves). However, direct intermuscular transmission of force may also occur via the perimysium shared between the two muscles. Conclusions Global strains imposed on muscle (joint movement) are not good estimators of in vivo local strains within it: differing in magnitude, as well as direction of length change. Substantial mechanical interaction occurs between calf muscles, which is mediated by myofascial force transmission between these synergistic muscles. This confirms conclusions of previous in situ studies in experimental animals and human patients, for in vivo conditions in healthy human subjects. © 2011 Springer-Verlag

    Elevated Serum Uric Acid Is Associated with High Circulating Inflammatory Cytokines in the Population-Based Colaus Study

    Get PDF
    BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation

    Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes.</p> <p>Methods</p> <p>Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations <it>in vivo</it>. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose.</p> <p>Results</p> <p>The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose <it>in vivo </it>for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36%). For high LET, OER variations up to 4% for the whole range of oxygen tensions between 0.01 and 20 mmHg were found, which were much smaller than for low LET.</p> <p>Conclusions</p> <p>The formalism presented in this paper can be used for various tissue and radiation types to estimate OER variations with dose and help to decide in clinical practice whether some dose changes in dose painting or in fractionation can bring more benefit in terms of the OER in the treatment of a specific hypoxic tumor.</p

    Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls

    Get PDF
    Evidence that fructose intake may modify blood pressure is generally limited to adult populations. This study examined cross-sectional associations between dietary intake of fructose, serum uric acid and blood pressure in 814 adolescents aged 13–15 years participating in the Western Australian Pregnancy Cohort (Raine) Study. Energy-adjusted fructose intake was derived from 3-day food records, serum uric acid concentration was assessed using fasting blood and resting blood pressure was determined using repeated oscillometric readings. In multivariate linear regression models, we did not see a significant association between fructose and blood pressure in boys or girls. In boys, fructose intake was independently associated with serum uric acid (P<0.01), and serum uric acid was independently associated with systolic blood pressure (P<0.01) and mean arterial pressure (P<0.001). Although there are independent associations, there is no direct relationship between fructose intake and blood pressure. Our data suggest that gender may influence these relationships in adolescence, with significant associations observed more frequently in boys than girls
    corecore